% -*- texinfo -*- % @deftypefn {Function File} {[@var{k}, @var{g}, @var{gw}, @var{xinf}, @var{yinf}] =} hinfsyn (@var{asys}, @var{nu}, @var{ny}, @var{gmin}, @var{gmax}, @var{gtol}, @var{ptol}, @var{tol}) % % @strong{Inputs} input system is passed as either % @table @var % @item asys % system data structure (see @command{ss}, @command{sys2ss}) % @itemize @bullet % @item controller is implemented for continuous time systems % @item controller is @strong{not} implemented for discrete time systems (see % bilinear transforms in @command{c2d}, @command{d2c}) % @end itemize % @item nu % number of controlled inputs % @item ny % number of measured outputs % @item gmin % initial lower bound on % @iftex % @tex % $ { \cal H }_\infty $ % @end tex % @end iftex % @ifinfo % H-infinity % @end ifinfo % optimal gain % @item gmax % initial upper bound on % @iftex % @tex % $ { \cal H }_\infty $ % @end tex % @end iftex % @ifinfo % H-infinity % @end ifinfo % Optimal gain. % @item gtol % Gain threshold. Routine quits when @var{gmax}/@var{gmin} < 1+tol. % @item ptol % poles with @code{abs(real(pole))} % @iftex % @tex % $ < ptol \Vert H \Vert $ % @end tex % @end iftex % @ifinfo % < ptol*|H| % @end ifinfo % (@var{H} is appropriate % Hamiltonian) are considered to be on the imaginary axis. % Default: 1e-9. % @item tol % threshold for 0. Default: 200*@code{eps}. % % @var{gmax}, @var{min}, @var{tol}, and @var{tol} must all be positive scalars. % @end table % @strong{Outputs} % @table @var % @item k % System controller. % @item g % Designed gain value. % @item gw % Closed loop system. % @item xinf % @acronym{ARE} solution matrix for regulator subproblem. % @item yinf % @acronym{ARE} solution matrix for filter subproblem. % @end table % % References: % @enumerate % @item Doyle, Glover, Khargonekar, Francis, @cite{State-Space Solutions % to Standard} % @iftex % @tex % $ { \cal H }_2 $ @cite{and} $ { \cal H }_\infty $ % @end tex % @end iftex % @ifinfo % @cite{H-2 and H-infinity} % @end ifinfo % @cite{Control Problems}, @acronym{IEEE} @acronym{TAC} August 1989. % % @item Maciejowksi, J.M., @cite{Multivariable feedback design}, % Addison-Wesley, 1989, @acronym{ISBN} 0-201-18243-2. % % @item Keith Glover and John C. Doyle, @cite{State-space formulae for all % stabilizing controllers that satisfy an} % @iftex % @tex % $ { \cal H }_\infty $@cite{norm} % @end tex % @end iftex % @ifinfo % @cite{H-infinity-norm} % @end ifinfo % @cite{bound and relations to risk sensitivity}, % Systems & Control Letters 11, Oct. 1988, pp 167--172. % @end enumerate % @end deftypefn