% -*- texinfo -*- % @deftypefn {Function File} {[@var{retval}, @var{dgkf_struct} ] =} is_dgkf (@var{asys}, @var{nu}, @var{ny}, @var{tol} ) % Determine whether a continuous time state space system meets % assumptions of @acronym{DGKF} algorithm. % Partitions system into: % @example % [dx/dt] [A | Bw Bu ][w] % [ z ] = [Cz | Dzw Dzu ][u] % [ y ] [Cy | Dyw Dyu ] % @end example % or similar discrete-time system. % If necessary, orthogonal transformations @var{qw}, @var{qz} and nonsingular % transformations @var{ru}, @var{ry} are applied to respective vectors % @var{w}, @var{z}, @var{u}, @var{y} in order to satisfy @acronym{DGKF} assumptions. % Loop shifting is used if @var{dyu} block is nonzero. % % @strong{Inputs} % @table @var % @item asys % system data structure % @item nu % number of controlled inputs % @item ny % number of measured outputs % @item tol % threshold for 0; default: 200*@code{eps}. % @end table % @strong{Outputs} % @table @var % @item retval % true(1) if system passes check, false(0) otherwise % @item dgkf_struct % data structure of @command{is_dgkf} results. Entries: % @table @var % @item nw % @itemx nz % dimensions of @var{w}, @var{z} % @item a % system @math{A} matrix % @item bw % (@var{n} x @var{nw}) @var{qw}-transformed disturbance input matrix % @item bu % (@var{n} x @var{nu}) @var{ru}-transformed controlled input matrix; % % @math{B = [Bw Bu]} % @item cz % (@var{nz} x @var{n}) Qz-transformed error output matrix % @item cy % (@var{ny} x @var{n}) @var{ry}-transformed measured output matrix % % @math{C = [Cz; Cy]} % @item dzu % @item dyw % off-diagonal blocks of transformed system @math{D} matrix that enter % @var{z}, @var{y} from @var{u}, @var{w} respectively % @item ru % controlled input transformation matrix % @item ry % observed output transformation matrix % @item dyu_nz % nonzero if the @var{dyu} block is nonzero. % @item dyu % untransformed @var{dyu} block % @item dflg % nonzero if the system is discrete-time % @end table % @end table % @code{is_dgkf} exits with an error if the system is mixed % discrete/continuous. % % @strong{References} % @table @strong % @item [1] % Doyle, Glover, Khargonekar, Francis, @cite{State Space Solutions to Standard} % @iftex % @tex % $ { \cal H }_2 $ @cite{and} $ { \cal H }_\infty $ % @end tex % @end iftex % @ifinfo % @cite{H-2 and H-infinity} % @end ifinfo % @cite{Control Problems}, @acronym{IEEE} @acronym{TAC} August 1989. % @item [2] % Maciejowksi, J.M., @cite{Multivariable Feedback Design}, Addison-Wesley, 1989. % @end table % @end deftypefn