Home > freetb4matlab > control > hinfdemo.m

hinfdemo

PURPOSE ^

%

SYNOPSIS ^

This is a script file.

DESCRIPTION ^

% -*- texinfo -*-
% @deftypefn {Function File} {} hinfdemo 
%
% @iftex
% @tex
% $ { \cal H }_\infty $
% @end tex
% @end iftex
% @ifinfo
% H-infinity
% @end ifinfo
% design demos for continuous @acronym{SISO} and @acronym{MIMO} systems and a
% discrete system.  The @acronym{SISO} system is difficult to control because
% it is non-minimum-phase and unstable. The second design example
% controls the @command{jet707} plant, the linearized state space model of a
% Boeing 707-321 aircraft at @var{v}=80 m/s 
% @iftex
% @tex
% ($M = 0.26$, $G_{a0} = -3^{\circ}$, ${\alpha}_0 = 4^{\circ}$, ${\kappa}= 50^{\circ}$).
% @end tex
% @end iftex
% @ifinfo
% (@var{M} = 0.26, @var{Ga0} = -3 deg, @var{alpha0} = 4 deg, @var{kappa} = 50 deg).
% @end ifinfo
% Inputs: (1) thrust and (2) elevator angle
% Outputs: (1) airspeed and (2) pitch angle. The discrete system is a
% stable and second order.
%
% @table @asis
% @item @acronym{SISO} plant:
%
% @iftex
% @tex
% $$ G(s) = { s-2 \over (s+2) (s-1) } $$
% @end tex
% @end iftex
% @ifinfo
% @example
% @group
%                 s - 2
%      G(s) = --------------
%             (s + 2)(s - 1)
% @end group
% @end example
% @end ifinfo
%
% @smallexample
% @group
%
%                               +----+
%          -------------------->| W1 |---> v1
%      z   |                    +----+
%      ----|-------------+
%          |             |
%          |    +---+    v   y  +----+
%        u *--->| G |--->O--*-->| W2 |---> v2
%          |    +---+       |   +----+
%          |                |
%          |    +---+       |
%          -----| K |<-------
%               +---+
% @end group
% @end smallexample
% 
% @iftex
% @tex
% $$ { \rm min } \Vert T_{vz} \Vert _\infty $$
% @end tex
% @end iftex
% @ifinfo
% @example
% min | T   |
%         vz   infty
% @end example
% @end ifinfo
%
% @var{W1} und @var{W2} are the robustness and performance weighting
% functions.
%
% @item @acronym{MIMO} plant:
% The optimal controller minimizes the 
% @iftex
% @tex
% $ { \cal H }_\infty $
% @end tex
% @end iftex
% @ifinfo
% H-infinity
% @end ifinfo
% norm of the
% augmented plant @var{P} (mixed-sensitivity problem):
% @smallexample
% @group
%      w
%       1 -----------+
%                    |                   +----+
%                +---------------------->| W1 |----> z1
%      w         |   |                   +----+
%       2 ------------------------+
%                |   |            |
%                |   v   +----+   v      +----+
%             +--*-->o-->| G  |-->o--*-->| W2 |---> z2
%             |          +----+      |   +----+
%             |                      |
%             ^                      v
%             u                       y (to K)
%          (from controller K)
% @end group
% @end smallexample
%
% @iftex
% @tex
% $$ \left [ \matrix{ z_1 \cr
%                     z_2 \cr
%                     y   } \right ] =  
%  P \left [ \matrix{ w_1 \cr
%                     w_2 \cr
%                     u   } \right ] $$
% @end tex
% @end iftex
% @ifinfo
% @smallexample
% @group
%                   +    +           +    +
%                   | z  |           | w  |
%                   |  1 |           |  1 |
%                   | z  | = [ P ] * | w  |
%                   |  2 |           |  2 |
%                   | y  |           | u  |
%                   +    +           +    +
% @end group
% @end smallexample
% @end ifinfo
%
% @item Discrete system:
% This is not a true discrete design. The design is carried out
% in continuous time while the effect of sampling is described by
% a bilinear transformation of the sampled system.
% This method works quite well if the sampling period is ``small''
% compared to the plant time constants.
%
% @item The continuous plant:
% @iftex
% @tex
% $$ G(s) = { 1 \over (s+2)(s+1) } $$
% @end tex
% @end iftex
%
% @ifinfo
% @example
% @group
%                    1
%      G (s) = --------------
%       k      (s + 2)(s + 1)
%
% @end group
% @end example
% @end ifinfo
%
% is discretised with a @acronym{ZOH} (Sampling period = @var{Ts} = 1 second):
% @iftex
% @tex
% $$ G(z) = { 0.199788z + 0.073498 \over (z - 0.36788) (z - 0.13534) } $$
% @end tex
% @end iftex
% @ifinfo
% @example
% @group
%
%                0.199788z + 0.073498
%      G(z) = --------------------------
%             (z - 0.36788)(z - 0.13534)
% @end group
% @end example
% @end ifinfo
%
% @smallexample
% @group
%
%                               +----+
%          -------------------->| W1 |---> v1
%      z   |                    +----+
%      ----|-------------+
%          |             |
%          |    +---+    v      +----+
%          *--->| G |--->O--*-->| W2 |---> v2
%          |    +---+       |   +----+
%          |                |
%          |    +---+       |
%          -----| K |<-------
%               +---+
% @end group
% @end smallexample
% @iftex
% @tex
% $$ { \rm min } \Vert T_{vz} \Vert _\infty $$
% @end tex
% @end iftex
% @ifinfo
% @example
% min | T   |
%         vz   infty
% @end example
% @end ifinfo
% @var{W1} and @var{W2} are the robustness and performance weighting
% functions.
% @end table
% @end deftypefn

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:
Generated on Fri 22-May-2009 15:13:00 by m2html © 2003