% -*- texinfo -*- % @deftypefn {Function File} {} hinfdemo % % @iftex % @tex % $ { \cal H }_\infty $ % @end tex % @end iftex % @ifinfo % H-infinity % @end ifinfo % design demos for continuous @acronym{SISO} and @acronym{MIMO} systems and a % discrete system. The @acronym{SISO} system is difficult to control because % it is non-minimum-phase and unstable. The second design example % controls the @command{jet707} plant, the linearized state space model of a % Boeing 707-321 aircraft at @var{v}=80 m/s % @iftex % @tex % ($M = 0.26$, $G_{a0} = -3^{\circ}$, ${\alpha}_0 = 4^{\circ}$, ${\kappa}= 50^{\circ}$). % @end tex % @end iftex % @ifinfo % (@var{M} = 0.26, @var{Ga0} = -3 deg, @var{alpha0} = 4 deg, @var{kappa} = 50 deg). % @end ifinfo % Inputs: (1) thrust and (2) elevator angle % Outputs: (1) airspeed and (2) pitch angle. The discrete system is a % stable and second order. % % @table @asis % @item @acronym{SISO} plant: % % @iftex % @tex % $$ G(s) = { s-2 \over (s+2) (s-1) } $$ % @end tex % @end iftex % @ifinfo % @example % @group % s - 2 % G(s) = -------------- % (s + 2)(s - 1) % @end group % @end example % @end ifinfo % % @smallexample % @group % % +----+ % -------------------->| W1 |---> v1 % z | +----+ % ----|-------------+ % | | % | +---+ v y +----+ % u *--->| G |--->O--*-->| W2 |---> v2 % | +---+ | +----+ % | | % | +---+ | % -----| K |<------- % +---+ % @end group % @end smallexample % % @iftex % @tex % $$ { \rm min } \Vert T_{vz} \Vert _\infty $$ % @end tex % @end iftex % @ifinfo % @example % min | T | % vz infty % @end example % @end ifinfo % % @var{W1} und @var{W2} are the robustness and performance weighting % functions. % % @item @acronym{MIMO} plant: % The optimal controller minimizes the % @iftex % @tex % $ { \cal H }_\infty $ % @end tex % @end iftex % @ifinfo % H-infinity % @end ifinfo % norm of the % augmented plant @var{P} (mixed-sensitivity problem): % @smallexample % @group % w % 1 -----------+ % | +----+ % +---------------------->| W1 |----> z1 % w | | +----+ % 2 ------------------------+ % | | | % | v +----+ v +----+ % +--*-->o-->| G |-->o--*-->| W2 |---> z2 % | +----+ | +----+ % | | % ^ v % u y (to K) % (from controller K) % @end group % @end smallexample % % @iftex % @tex % $$ \left [ \matrix{ z_1 \cr % z_2 \cr % y } \right ] = % P \left [ \matrix{ w_1 \cr % w_2 \cr % u } \right ] $$ % @end tex % @end iftex % @ifinfo % @smallexample % @group % + + + + % | z | | w | % | 1 | | 1 | % | z | = [ P ] * | w | % | 2 | | 2 | % | y | | u | % + + + + % @end group % @end smallexample % @end ifinfo % % @item Discrete system: % This is not a true discrete design. The design is carried out % in continuous time while the effect of sampling is described by % a bilinear transformation of the sampled system. % This method works quite well if the sampling period is ``small'' % compared to the plant time constants. % % @item The continuous plant: % @iftex % @tex % $$ G(s) = { 1 \over (s+2)(s+1) } $$ % @end tex % @end iftex % % @ifinfo % @example % @group % 1 % G (s) = -------------- % k (s + 2)(s + 1) % % @end group % @end example % @end ifinfo % % is discretised with a @acronym{ZOH} (Sampling period = @var{Ts} = 1 second): % @iftex % @tex % $$ G(z) = { 0.199788z + 0.073498 \over (z - 0.36788) (z - 0.13534) } $$ % @end tex % @end iftex % @ifinfo % @example % @group % % 0.199788z + 0.073498 % G(z) = -------------------------- % (z - 0.36788)(z - 0.13534) % @end group % @end example % @end ifinfo % % @smallexample % @group % % +----+ % -------------------->| W1 |---> v1 % z | +----+ % ----|-------------+ % | | % | +---+ v +----+ % *--->| G |--->O--*-->| W2 |---> v2 % | +---+ | +----+ % | | % | +---+ | % -----| K |<------- % +---+ % @end group % @end smallexample % @iftex % @tex % $$ { \rm min } \Vert T_{vz} \Vert _\infty $$ % @end tex % @end iftex % @ifinfo % @example % min | T | % vz infty % @end example % @end ifinfo % @var{W1} and @var{W2} are the robustness and performance weighting % functions. % @end table % @end deftypefn