ar_psd | % Copyright (C) 2006 Peter V. Lanspeary |
arburg | % Copyright (C) 2006 Peter V. Lanspeary |
arch_fit | % Fit an ARCH regression model to the time series @var{y} using the |
arch_rnd | % Simulate an ARCH sequence of length @var{t} with AR |
arch_test | % For a linear regression model |
arma_rnd | % Return a simulation of the ARMA model |
aryule | % error: [a, v, k] = aryule (x, p) |
autocor | % Return the autocorrelations from lag 0 to @var{h} of vector @var{x}. |
autocov | % Return the autocovariances from lag 0 to @var{h} of vector @var{x}. |
autoreg_matrix | % Given a time series (vector) @var{y}, return a matrix with ones in the |
barthannwin | % Compute the modified Bartlett-Hann window of lenght L. |
bartlett | % Return the filter coefficients of a Bartlett (triangular) window of |
bilinear | % error: [Zz, Zp, Zg] = bilinear(Sz, Sp, Sg, T) |
bitrevorder | % Reorder x in the bit reversed order |
blackman | % Return the filter coefficients of a Blackman window of length @var{m}. |
blackmanharris | % Compute the Blackman-Harris window. |
blackmannuttall | % Compute the Blackman-Nuttall window. |
bohmanwin | % Compute the Bohman window of lenght L. |
boxcar | % error: w = boxcar (n) |
buffer | % Buffer a signal into a data frame. The arguments to @code{buffer} are |
butter | % Generate a butterworth filter. |
buttord | % Compute butterworth filter order and cutoff for the desired response |
cceps | % error: cceps (x [, correct]) |
cheb | % Usage: cheb (n, x) |
cheb1ord | % Compute chebyshev type I filter order and cutoff for the desired response |
cheb2ord | % Compute chebyshev type II filter order and cutoff for the desired response |
chebwin | % Usage: chebwin (n, at) |
cheby1 | % Generate an Chebyshev type I filter with Rp dB of pass band ripple. |
cheby2 | % Generate an Chebyshev type II filter with Rs dB of stop band attenuation. |
chirp | % error: y = chirp(t [, f0 [, t1 [, f1 [, form [, phase]]]]]) |
cmorwavf | % Compute the Complex Morlet wavelet. |
cohere | % Copyright (C) 2006 Peter V. Lanspeary |
convmtx | % If @var{a} is a column vector and @var{x} is a column vector |
cplxreal | % Copyright (C) 2005 Julius O. Smith III |
cpsd | % Copyright (C) 2006 Peter V. Lanspeary |
csd | % Copyright (C) 2006 Peter V. Lanspeary |
czt | % error y=czt(x, m, w, a) |
dct | % y = dct (x, n) |
dct2 | % y = dct2 (x) |
dctmtx | % T = dctmtx (n) |
decimate | % error: y = decimate(x, q [, n] [, ftype]) |
detrend | % If @var{x} is a vector, @code{detrend (@var{x}, @var{p})} removes the |
dftmtx | % |
diffpara | % Return the estimator @var{d} for the differencing parameter of an |
diric | % Compute the dirichlet function. |
downsample | % Downsample the signal, selecting every nth element. If @var{x} |
dst | % Computes the type I discrete sine transform of @var{x}. If @var{n} is given, |
durbinlevinson | % Perform one step of the Durbin-Levinson algorithm. |
dwt | % Comupte de discrete wavelet transform of x with one level. |
ellip | % N-ellip 0.2.1 |
ellipdemo | |
ellipord | % error: [n,wp] = ellipord(wp,ws, rp,rs) |
fftconv | % Return the convolution of the vectors @var{a} and @var{b}, as a vector |
fftfilt | % |
fftshift | % Perform a shift of the vector @var{v}, for use with the @code{fft} |
fht | % @cindex linear algebra |
filter2 | % Apply the 2-D FIR filter @var{b} to @var{x}. If the argument |
filtfilt | % error: y = filtfilt(b, a, x) |
filtic | % Set initial condition vector for filter function |
fir1 | % error: b = fir1(n, w [, type] [, window] [, noscale]) |
fir2 | % error: b = fir2(n, f, m [, grid_n [, ramp_n]] [, window]) |
firls | % b = firls(N, F, A); |
flattopwin | % flattopwin(n, [periodic|symmetric]) |
fracshift | % Shift the series @var{x} by a (possibly fractional) number of samples @var{d}. |
fractdiff | % Compute the fractional differences @math{(1-L)^d x} where @math{L} |
freqs | Copyright (C) 2003 Julius O. Smith III |
freqs_plot | % Plot the amplitude and phase of the vector @var{h}. |
freqz | % Return the complex frequency response @var{h} of the rational IIR filter |
freqz_plot | % Plot the pass band, stop band and phase response of @var{h}. |
gauspuls | % Return the Gaussian modulated sinusoidal pulse. |
gaussian | % error: w = gaussian(n, a) |
gausswin | % error: w = gausswin(n, a) |
gmonopuls | % Return the gaussian monopulse. |
grpdelay | % Compute the group delay of a filter. |
hamming | % Return the filter coefficients of a Hamming window of length @var{m}. |
hann | w = hann(n) |
hanning | % Return the filter coefficients of a Hanning window of length @var{m}. |
hilbert | % Analytic extension of real valued signal |
hurst | % Estimate the Hurst parameter of sample @var{x} via the rescaled range |
idct | % y = dct (x, n) |
idct2 | % y = idct2 (x) |
idst | % Computes the inverse type I discrete sine transform of @var{y}. If @var{n} is |
ifftshift | % Undo the action of the @code{fftshift} function. For even length |
ifht | % @cindex linear algebra |
impz | % error: [x, t] = impz(b [, a, n, fs]) |
interp | % error: y = interp(x, q [, n [, Wc]]) |
invfreq | Copyright (C) 1986,2003 Julius O. Smith III |
invfreqs | Copyright (C) 1986,2003 Julius O. Smith III |
invfreqz | Copyright (C) 1986,2003 Julius O. Smith III |
kaiser | % error: kaiser (n, beta) |
kaiserord | % error: [n, Wn, beta, ftype] = kaiserord(f, m, dev [, fs]) |
levinson | % error: [a, v, ref] = levinson (acf [, p]) |
mexihat | % Compute the Mexican hat wavelet. |
meyeraux | % Compute the Meyer wavelet auxiliary function. |
morlet | % Compute the Morlet wavelet. |
mscohere | % Copyright (C) 2006 Peter V. Lanspeary |
ncauer | % error: [Zz, Zp, Zg] = ncauer(Rp, Rs, n) |
nuttallwin | % Compute the Blackman-Harris window defined by Nuttall of length L. |
parzenwin | % Compute the Parzen window of lenght L. |
pburg | % Copyright (C) 2006 Peter V. Lanspeary |
periodogram | % For a data matrix @var{x} from a sample of size @var{n}, return the |
polystab | % b = polystab(a) |
pulstran | % error: y=pulstran(t,d,'func',...) |
pwelch | % Copyright (C) 2006 Peter V. Lanspeary |
pyulear | % Copyright (C) 2006 Peter V. Lanspeary |
qp_kaiser | % Usage: qp_kaiser (nb, at, linear) |
rceps | % error: [y, xm] = rceps(x) |
rectangle_lw | % Rectangular lag window. Subfunction used for spectral density |
rectangle_sw | % Rectangular spectral window. Subfunction used for spectral density |
rectpuls | % error: y = rectpuls(t, w) |
rectwin | % Return the filter coefficients of a rectangle window of length N. |
resample | % Change the sample rate of @var{x} by a factor of @var{p}/@var{q}. This is |
residued | % Copyright (C) 2005 Julius O. Smith III |
residuez | % Copyright (C) 2005 Julius O. Smith III |
sampled2continuous | % Copyright (C) 2009 Muthiah Annamalai |
sawtooth | % Generates a sawtooth wave of period @code{2 * pi} with limits @code{+1/-1} |
sftrans | % error: [Sz, Sp, Sg] = sftrans(Sz, Sp, Sg, W, stop) |
sgolay | % F = sgolay (p, n [, m [, ts]]) |
sgolayfilt | % y = sgolayfilt (x, p, n [, m [, ts]]) |
shanwavf | % Compute the Complex Shannon wavelet. |
sinc | % Return |
sinetone | % Return a sinetone of frequency @var{freq} with length of @var{sec} |
sinewave | % Return an @var{m}-element vector with @var{i}-th element given by |
sos2tf | % Copyright (C) 2005 Julius O. Smith III |
sos2zp | % Copyright (C) 2005 Julius O. Smith III |
specgram | % error: [S [, f [, t]]] = specgram(x [, n [, Fs [, window [, overlap]]]]) |
spectral_adf | % Return the spectral density estimator given a vector of |
spectral_xdf | % Return the spectral density estimator given a data vector @var{x}, |
spencer | % Return Spencer's 15 point moving average of every single column of |
square | % s = square(t,duty) |
stft | % Compute the short-time Fourier transform of the vector @var{x} with |
synthesis | % Compute a signal from its short-time Fourier transform @var{y} and a |
tf2sos | % Copyright (C) 2005 Julius O. Smith III |
tfe | % Copyright (C) 2006 Peter V. Lanspeary |
tfestimate | % Copyright (C) 2006 Peter V. Lanspeary |
triang | % error: w = triang (n) |
triangle_lw | % Triangular lag window. Subfunction used for spectral density |
triangle_sw | % Triangular spectral window. Subfunction used for spectral density |
tripuls | % error: y = tripuls(t, w, skew) |
tukeywin | % Return the filter coefficients of a Tukey window (also known as the |
unwrap | % |
upfirdn | % Upsample, filter and downsample a signal. |
upsample | % Upsample the signal, inserting n-1 zeros between every element. |
welchwin | % Returns a row vector containing a Welch window, given by |
window | % Create a @var{n}-point windowing from the function @var{f}. The |
wkeep | % Extract the elements of x of size l from the center, the right or the left. |
wrev | % Reverse the order of the element of the vector x. |
xcorr | % error: [R, lag] = xcorr (X [, Y] [, maxlag] [, scale]) |
xcorr2 | % C = xcorr2 (A, B) |
xcov | % error: [c, lag] = xcov (X [, Y] [, maxlag] [, scale]) |
yulewalker | % Fit an AR (p)-model with Yule-Walker estimates given a vector @var{c} |
zerocrossing | % |
zp2sos | % Copyright (C) 2005 Julius O. Smith III |
zplane | % error: zplane(b [, a]) or zplane(z [, p]) |