% -*- texinfo -*- % @deftypefn {Function File} {[@var{pval}, @var{lm}] =} arch_test (@var{y}, @var{x}, @var{p}) % For a linear regression model % % @example % y = x * b + e % @end example % % @noindent % perform a Lagrange Multiplier (LM) test of the null hypothesis of no % conditional heteroscedascity against the alternative of CH(@var{p}). % % I.e., the model is % % @example % y(t) = b(1) * x(t,1) + @dots{} + b(k) * x(t,k) + e(t), % @end example % % @noindent % given @var{y} up to @math{t-1} and @var{x} up to @math{t}, % @math{e}(t) is @math{N(0, h(t))} with % % @example % h(t) = v + a(1) * e(t-1)^2 + @dots{} + a(p) * e(t-p)^2, % @end example % % @noindent % and the null is @math{a(1)} == @dots{} == @math{a(p)} == 0. % % If the second argument is a scalar integer, @math{k}, perform the same % test in a linear autoregression model of order @math{k}, i.e., with % % @example % [1, y(t-1), @dots{}, y(t-@var{k})] % @end example % % @noindent % as the @math{t}-th row of @var{x}. % % Under the null, LM approximately has a chisquare distribution with % @var{p} degrees of freedom and @var{pval} is the @math{p}-value (1 % minus the CDF of this distribution at LM) of the test. % % If no output argument is given, the @math{p}-value is displayed. % @end deftypefn