


Train a (statistical) classifier
CC = train_sc(D,classlabel)
CC = train_sc(D,classlabel,MODE)
CC = train_sc(D,classlabel, 'REG', W)
weighting D(k,:) with weight W(k)
CC contains the model parameters of a classifier which can be applied
to test data using test_sc.
R = test_sc(CC,D,...)
The following classifier types are supported MODE.TYPE
'MDA' mahalanobis distance based classifier [1]
'MD2' mahalanobis distance based classifier [1]
'MD3' mahalanobis distance based classifier [1]
'GRB' Gaussian radial basis function [1]
'QDA' quadratic discriminant analysis [1]
'LD2' linear discriminant analysis (see LDBC2) [1]
MODE.hyperparameter.gamma: regularization parameter [default 0]
'LD3' linear discriminant analysis (see LDBC3) [1]
MODE.hyperparameter.gamma: regularization parameter [default 0]
'LD4' linear discriminant analysis (see LDBC4) [1]
MODE.hyperparameter.gamma: regularization parameter [default 0]
'LD5' another LDA (motivated by CSP)
MODE.hyperparameter.gamma: regularization parameter [default 0]
'RDA' regularized discriminant analysis [7]
MODE.hyperparameter.gamma: regularization parameter
MODE.hyperparameter.lambda =
gamma = 0, lambda = 0 : MDA
gamma = 0, lambda = 1 : LDA
Hint: hyperparameters are used only in test_sc.m, testing different
the hyperparameters do not need repetitive calls to train_sc,
it is sufficient to modify CC.hyperparameters before calling test_sc.
'GDBC' general distance based classifier [1]
'' statistical classifier, requires Mode argument in TEST_SC
'###/GSVD' GSVD and statistical classifier [2,3],
'###/sparse' sparse [5]
'###' must be 'LDA' or any other classifier
'SVM','SVM1r' support vector machines, one-vs-rest
MODE.hyperparameter.c_value =
'PSVM' Proximal SVM [8]
MODE.hyperparameter.nu (default: 1.0)
'PLS' (linear) partial least squares regression
'REG' regression analysis;
'WienerHopf' Wiener-Hopf equation
'NBC' Naive Bayesian Classifier [6]
'aNBC' Augmented Naive Bayesian Classifier [6]
'NBPW' Naive Bayesian Parzen Window [9]
'SVM11' support vector machines, one-vs-one + voting
MODE.hyperparameter.c_value =
'RBF' Support Vector Machines with RBF Kernel
MODE.hyperparameter.c_value =
MODE.hyperparameter.gamma =
'LPM' Linear Programming Machine
MODE.hyperparameter.c_value =
'CSP' CommonSpatialPattern is very experimental and just a hack
uses a smoothing window of 50 samples.
{'MDA','MD2','LD2','LD3','LD4','LD5','LD6','NBC','aNBC','WienerHopf','REG','LDA/GSVD','MDA/GSVD', 'LDA/sparse','MDA/sparse','RDA','GDBC','SVM','RBF'}
CC contains the model parameters of a classifier. Some time ago,
CC was a statistical classifier containing the mean
and the covariance of the data of each class (encoded in the
so-called "extended covariance matrices". Nowadays, also other
classifiers are supported.
see also: TEST_SC, COVM
References:
[1] R. Duda, P. Hart, and D. Stork, Pattern Classification, second ed.
John Wiley & Sons, 2001.
[2] Peg Howland and Haesun Park,
Generalizing Discriminant Analysis Using the Generalized Singular Value Decomposition
IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(8), 2004.
dx.doi.org/10.1109/TPAMI.2004.46
[3] http://www-static.cc.gatech.edu/~kihwan23/face_recog_gsvd.htm
[4] Jieping Ye, Ravi Janardan, Cheong Hee Park, Haesun Park
A new optimization criterion for generalized discriminant analysis on undersampled problems.
The Third IEEE International Conference on Data Mining, Melbourne, Florida, USA
November 19 - 22, 2003
[5] J.D. Tebbens and P. Schlesinger (2006),
Improving Implementation of Linear Discriminant Analysis for the Small Sample Size Problem
Computational Statistics & Data Analysis, vol 52(1): 423-437, 2007
http://www.cs.cas.cz/mweb/download/publi/JdtSchl2006.pdf
[6] H. Zhang, The optimality of Naive Bayes,
http://www.cs.unb.ca/profs/hzhang/publications/FLAIRS04ZhangH.pdf
[7] J.H. Friedman. Regularized discriminant analysis.
Journal of the American Statistical Association, 84:165–175, 1989.
[8] G. Fung and O.L. Mangasarian, Proximal Support Vector Machine Classifiers, KDD 2001.
Eds. F. Provost and R. Srikant, Proc. KDD-2001: Knowledge Discovery and Data Mining, August 26-29, 2001, San Francisco, CA.
p. 77-86.
[9] Kai Keng Ang, Zhang Yang Chin, Haihong Zhang, Cuntai Guan.
Filter Bank Common Spatial Pattern (FBCSP) in Brain-Computer Interface.
IEEE International Joint Conference on Neural Networks, 2008. IJCNN 2008. (IEEE World Congress on Computational Intelligence).
1-8 June 2008 Page(s):2390 - 2397