XVAL is used for crossvalidation [R,CC] = xval(D,classlabel) .. = xval(D,classlabel,CLASSIFIER) .. = xval(D,classlabel,CLASSIFIER,type) .. = xval(D,[classlabel,W],CLASSIFIER) .. = xval(D,[classlabel,W,NG],CLASSIFIER) Input: D: data features (one feature per column, one sample per row) classlabel classlabel (same number of rows) CLASSIFIER can be any classifier supported by train_sc (default='LDA') {'MDA','MD2','LD2','LD3','LD4','LD5','LD6','NBC','aNBC','WienerHopf','REG','LDA/GSVD','MDA/GSVD', 'LDA/sparse','MDA/sparse','RDA','GDBC','SVM','RBF'} W: weights for each sample (row) in D. default: [] (i.e. all weights are 1) number of elements in W must match the number of rows of D NG: used to define the type of cross-valdiation Leave-One-Out-Method (LOOM): NG = [1:length(classlabel)]' (default) Leave-K-Out-Method: NG = ceil([1:length(classlabel)]'/K) K-fold XV: NG = ceil([1:length(classlabel)]'*K/length(classlabel)) group-wise XV (if samples are not indepentent) can be also defined here samples from the same group (dependent samples) get the same identifier samples from different groups get different classifiers TYPE: defines the type of cross-validation procedure if NG is not specified 'LOOM' leave-one-out-method k k-fold crossvalidation OUTPUT: R contains the resulting performance metric CC contains the classifier plota(R) shows the confusion matrix of the results see also: TRAIN_SC, TEST_SC, CLASSIFY, PLOTA References: [1] R. Duda, P. Hart, and D. Stork, Pattern Classification, second ed. John Wiley & Sons, 2001. [2] A. Schlögl, J. Kronegg, J.E. Huggins, S. G. Mason; Evaluation criteria in BCI research. (Eds.) G. Dornhege, J.R. Millan, T. Hinterberger, D.J. McFarland, K.-R.Müller; Towards Brain-Computer Interfacing, MIT Press, 2007, p.327-342