% -*- texinfo -*- % @deftypefn {Function File} {@var{q} =} quadl (@var{f}, @var{a}, @var{b}) % @deftypefnx {Function File} {@var{q} =} quadl (@var{f}, @var{a}, @var{b}, @var{tol}) % @deftypefnx {Function File} {@var{q} =} quadl (@var{f}, @var{a}, @var{b}, @var{tol}, @var{trace}) % @deftypefnx {Function File} {@var{q} =} quadl (@var{f}, @var{a}, @var{b}, @var{tol}, @var{trace}, @var{p1}, @var{p2}, @dots{}) % % Numerically evaluate integral using adaptive Lobatto rule. % @code{quadl (@var{f}, @var{a}, @var{b})} approximates the integral of % @code{@var{f}(@var{x})} to machine precision. @var{f} is either a % function handle, inline function or string containing the name of % the function to evaluate. The function @var{f} must return a vector % of output values if given a vector of input values. % % If defined, @var{tol} defines the relative tolerance to which to % which to integrate @code{@var{f}(@var{x})}. While if @var{trace} is % defined, displays the left end point of the current interval, the % interval length, and the partial integral. % % Additional arguments @var{p1}, etc., are passed directly to @var{f}. % To use default values for @var{tol} and @var{trace}, one may pass % empty matrices. % % Reference: W. Gander and W. Gautschi, 'Adaptive Quadrature - % Revisited', BIT Vol. 40, No. 1, March 2000, pp. 84--101. % @url{http://www.inf.ethz.ch/personal/gander/} % % @end deftypefn