


% -*- texinfo -*-
% @deftypefn {Function File} {@var{q} =} quadl (@var{f}, @var{a}, @var{b})
% @deftypefnx {Function File} {@var{q} =} quadl (@var{f}, @var{a}, @var{b}, @var{tol})
% @deftypefnx {Function File} {@var{q} =} quadl (@var{f}, @var{a}, @var{b}, @var{tol}, @var{trace})
% @deftypefnx {Function File} {@var{q} =} quadl (@var{f}, @var{a}, @var{b}, @var{tol}, @var{trace}, @var{p1}, @var{p2}, @dots{})
%
% Numerically evaluate integral using adaptive Lobatto rule.
% @code{quadl (@var{f}, @var{a}, @var{b})} approximates the integral of
% @code{@var{f}(@var{x})} to machine precision. @var{f} is either a
% function handle, inline function or string containing the name of
% the function to evaluate. The function @var{f} must return a vector
% of output values if given a vector of input values.
%
% If defined, @var{tol} defines the relative tolerance to which to
% which to integrate @code{@var{f}(@var{x})}. While if @var{trace} is
% defined, displays the left end point of the current interval, the
% interval length, and the partial integral.
%
% Additional arguments @var{p1}, etc., are passed directly to @var{f}.
% To use default values for @var{tol} and @var{trace}, one may pass
% empty matrices.
%
% Reference: W. Gander and W. Gautschi, 'Adaptive Quadrature -
% Revisited', BIT Vol. 40, No. 1, March 2000, pp. 84--101.
% @url{http://www.inf.ethz.ch/personal/gander/}
%
% @end deftypefn