% -*- texinfo -*- % @deftypefn {Function File} {[@var{k}, @var{p}, @var{e}] =} lqr (@var{a}, @var{b}, @var{q}, @var{r}, @var{z}) % construct the linear quadratic regulator for the continuous time system % @iftex % @tex % $$ % {dx\over dt} = A x + B u % $$ % @end tex % @end iftex % @ifinfo % % @example % dx % -- = A x + B u % dt % @end example % % @end ifinfo % to minimize the cost functional % @iftex % @tex % $$ % J = \int_0^\infty x^T Q x + u^T R u % $$ % @end tex % @end iftex % @ifinfo % % @example % infinity % / % J = | x' Q x + u' R u % / % t=0 % @end example % @end ifinfo % % @noindent % @var{z} omitted or % @iftex % @tex % $$ % J = \int_0^\infty x^T Q x + u^T R u + 2 x^T Z u % $$ % @end tex % @end iftex % @ifinfo % % @example % infinity % / % J = | x' Q x + u' R u + 2 x' Z u % / % t=0 % @end example % % @end ifinfo % @var{z} included. % % The following values are returned: % % @table @var % @item k % The state feedback gain, % @iftex % @tex % $(A - B K)$ % @end tex % @end iftex % @ifinfo % (@var{a} - @var{b}@var{k}) % @end ifinfo % is stable and minimizes the cost functional % % @item p % The stabilizing solution of appropriate algebraic Riccati equation. % % @item e % The vector of the closed loop poles of % @iftex % @tex % $(A - B K)$. % @end tex % @end iftex % @ifinfo % (@var{a} - @var{b}@var{k}). % @end ifinfo % @end table % % @strong{Reference} % Anderson and Moore, @cite{Optimal control: linear quadratic methods}, % Prentice-Hall, 1990, pp. 56--58. % @end deftypefn