% -*- texinfo -*- % @deftypefn {Function File} {[@var{k}, @var{p}, @var{e}] =} lqe (@var{a}, @var{g}, @var{c}, @var{sigw}, @var{sigv}, @var{z}) % Construct the linear quadratic estimator (Kalman filter) for the % continuous time system % @iftex % @tex % $$ % {dx\over dt} = A x + G u % $$ % $$ % y = C x + v % $$ % @end tex % @end iftex % @ifinfo % % @example % dx % -- = A x + G u % dt % % y = C x + v % @end example % % @end ifinfo % where @var{w} and @var{v} are zero-mean gaussian noise processes with % respective intensities % % @example % sigw = cov (w, w) % sigv = cov (v, v) % @end example % % The optional argument @var{z} is the cross-covariance % @code{cov (@var{w}, @var{v})}. If it is omitted, % @code{cov (@var{w}, @var{v}) = 0} is assumed. % % Observer structure is @code{dz/dt = A z + B u + k (y - C z - D u)} % % The following values are returned: % % @table @var % @item k % The observer gain, % @iftex % @tex % $(A - K C)$ % @end tex % @end iftex % @ifinfo % (@var{a} - @var{k}@var{c}) % @end ifinfo % is stable. % % @item p % The solution of algebraic Riccati equation. % % @item e % The vector of closed loop poles of % @iftex % @tex % $(A - K C)$. % @end tex % @end iftex % @ifinfo % (@var{a} - @var{k}@var{c}). % @end ifinfo % @end table % @end deftypefn