% -*- texinfo -*- % @deftypefn {Function File} {[@var{g}, @var{gmin}, @var{gmax}] =} hinfnorm (@var{sys}, @var{tol}, @var{gmin}, @var{gmax}, @var{ptol}) % Computes the % @iftex % @tex % $ { \cal H }_\infty $ % @end tex % @end iftex % @ifinfo % H-infinity % @end ifinfo % norm of a system data structure. % % @strong{Inputs} % @table @var % @item sys % system data structure % @item tol % @iftex % @tex % $ { \cal H }_\infty $ % @end tex % @end iftex % @ifinfo % H-infinity % @end ifinfo % norm search tolerance (default: 0.001) % @item gmin % minimum value for norm search (default: 1e-9) % @item gmax % maximum value for norm search (default: 1e+9) % @item ptol % pole tolerance: % @itemize @bullet % @item if sys is continuous, poles with % @iftex % @tex % $ \vert {\rm real}(pole) \vert < ptol \Vert H \Vert $ % @end tex % @end iftex % @ifinfo % @math{ |real(pole))| < ptol*|H| } % @end ifinfo % (@var{H} is appropriate Hamiltonian) % are considered to be on the imaginary axis. % % @item if sys is discrete, poles with % @iftex % @tex % $ \vert { \rm pole } - 1 \vert < ptol \Vert [ s_1 s_2 ] \Vert $ % @end tex % @end iftex % @ifinfo % @math{|abs(pole)-1| < ptol*|[s1,s2]|} % @end ifinfo % (appropriate symplectic pencil) % are considered to be on the unit circle. % % @item Default value: 1e-9 % @end itemize % @end table % % @strong{Outputs} % @table @var % @item g % Computed gain, within @var{tol} of actual gain. @var{g} is returned as Inf % if the system is unstable. % @item gmin % @itemx gmax % Actual system gain lies in the interval [@var{gmin}, @var{gmax}]. % @end table % % References: % Doyle, Glover, Khargonekar, Francis, @cite{State-space solutions to standard} % @iftex % @tex % $ { \cal H }_2 $ @cite{and} $ { \cal H }_\infty $ % @end tex % @end iftex % @ifinfo % @cite{H-2 and H-infinity} % @end ifinfo % @cite{control problems}, @acronym{IEEE} @acronym{TAC} August 1989; % Iglesias and Glover, @cite{State-Space approach to discrete-time} % @iftex % @tex % $ { \cal H }_\infty $ % @end tex % @end iftex % @ifinfo % @cite{H-infinity} % @end ifinfo % @cite{control}, Int. J. Control, vol 54, no. 5, 1991; % Zhou, Doyle, Glover, @cite{Robust and Optimal Control}, Prentice-Hall, 1996. % @end deftypefn