% -*- texinfo -*- % @deftypefn {Function File} {[@var{tvals}, @var{plist}] =} dre (@var{sys}, @var{q}, @var{r}, @var{qf}, @var{t0}, @var{tf}, @var{ptol}, @var{maxits}) % Solve the differential Riccati equation % @ifinfo % @example % -d P/dt = A'P + P A - P B inv(R) B' P + Q % P(tf) = Qf % @end example % @end ifinfo % @iftex % @tex % $$ -{dP \over dt} = A^T P+PA-PBR^{-1}B^T P+Q $$ % $$ P(t_f) = Q_f $$ % @end tex % @end iftex % for the @acronym{LTI} system sys. Solution of % standard @acronym{LTI} state feedback optimization % @ifinfo % @example % min int(t0, tf) ( x' Q x + u' R u ) dt + x(tf)' Qf x(tf) % @end example % @end ifinfo % @iftex % @tex % $$ \min \int_{t_0}^{t_f} x^T Q x + u^T R u dt + x(t_f)^T Q_f x(t_f) $$ % @end tex % @end iftex % optimal input is % @ifinfo % @example % u = - inv(R) B' P(t) x % @end example % @end ifinfo % @iftex % @tex % $$ u = - R^{-1} B^T P(t) x $$ % @end tex % @end iftex % @strong{Inputs} % @table @var % @item sys % continuous time system data structure % @item q % state integral penalty % @item r % input integral penalty % @item qf % state terminal penalty % @item t0 % @itemx tf % limits on the integral % @item ptol % tolerance (used to select time samples; see below); default = 0.1 % @item maxits % number of refinement iterations (default=10) % @end table % @strong{Outputs} % @table @var % @item tvals % time values at which @var{p}(@var{t}) is computed % @item plist % list values of @var{p}(@var{t}); @var{plist} @{ @var{i} @} % is @var{p}(@var{tvals}(@var{i})) % @end table % @var{tvals} is selected so that: % @iftex % @tex % $$ \Vert plist_{i} - plist_{i-1} \Vert < ptol $$ % @end tex % @end iftex % @ifinfo % @example % | Plist@{i@} - Plist@{i-1@} | < Ptol % @end example % @end ifinfo % for every @var{i} between 2 and length(@var{tvals}). % @end deftypefn