MVAR estimates Multi-Variate AutoRegressive model parameters Several estimation algorithms are implemented, all estimators can handle data with missing values encoded as NaNs. [AR,RC,PE] = mvar(Y, p); [AR,RC,PE] = mvar(Y, p, Mode); INPUT: Y Multivariate data series p Model order Mode determines estimation algorithm OUTPUT: AR multivariate autoregressive model parameter RC reflection coefficients (= -PARCOR coefficients) PE remaining error variance All input and output parameters are organized in columns, one column corresponds to the parameters of one channel. Mode determines estimation algorithm. 1: Correlation Function Estimation method using biased correlation function estimation method also called the "multichannel Yule-Walker" [1,2] 6: Correlation Function Estimation method using unbiased correlation function estimation method 2: Partial Correlation Estimation: Vieira-Morf [2] using unbiased covariance estimates. In [1] this mode was used and (incorrectly) denominated as Nutall-Strand. Its the DEFAULT mode; according to [1] it provides the most accurate estimates. 5: Partial Correlation Estimation: Vieira-Morf [2] using biased covariance estimates. Yields similar results than Mode=2; 3: Partial Correlation Estimation: Nutall-Strand [2] (biased correlation function) 7: Partial Correlation Estimation: Nutall-Strand [2] (unbiased correlation function) 8: Least-Squares 10: ARFIT [3] 11: BURGV [4] REFERENCES: [1] A. Schl\"ogl, Comparison of Multivariate Autoregressive Estimators. Signal processing, Elsevier B.V. (in press). available at http://dx.doi.org/doi:10.1016/j.sigpro.2005.11.007 [2] S.L. Marple "Digital Spectral Analysis with Applications" Prentice Hall, 1987. [3] Schneider and Neumaier) [4] Stijn de Waele, 2003 A multivariate inverse filter can be realized with [AR,RC,PE] = mvar(Y,P); e = mvfilter([eye(size(AR,1)),-AR],eye(size(AR,1)),Y); see also: MVFILTER, MVFREQZ, COVM, SUMSKIPNAN, ARFIT2