


Multivariate (Vector) adaptive AR estimation base on a multidimensional
Kalman filer algorithm. A standard VAR model (A0=I) is implemented. The
state vector is defined as X=(A1|A2...|Ap) and x=vec(X')
[x,e,Kalman,Q2] = mvaar(y,p,UC,mode,Kalman)
The standard MVAR model is defined as:
y(n)-A1(n)*y(n-1)-...-Ap(n)*y(n-p)=e(n)
The dimension of y(n) equals s
Input Parameters:
y Observed data or signal
p prescribed maximum model order (default 1)
UC update coefficient (default 0.001)
mode update method of the process noise covariance matrix 0...4 ^
correspond to S0...S4 (default 0)
Output Parameters
e prediction error of dimension s
x state vector of dimension s*s*p
Q2 measurement noise covariance matrix of dimension s x s