LPC Linear prediction coefficients The Burg-method is used to estimate the prediction coefficients A = lpc(Y [,P]) finds the coefficients A=[ 1 A(2) ... A(N+1) ], of an Pth order forward linear predictor Xp(n) = -A(2)*X(n-1) - A(3)*X(n-2) - ... - A(N+1)*X(n-P) such that the sum of the squares of the errors err(n) = X(n) - Xp(n) is minimized. X can be a vector or a matrix. If X is a matrix containing a separate signal in each column, LPC returns a model estimate for each column in the rows of A. N specifies the order of the polynomial A(z). If you do not specify a value for P, LPC uses a default P = length(X)-1. see also ACOVF ACORF AR2POLY RC2AR DURLEV SUMSKIPNAN LATTICE