% -*- texinfo -*- % @deftypefn {Function File} {@var{l} =} legendre (@var{n}, @var{x}) % @deftypefnx {Function File} {@var{l} =} legendre (@var{n}, @var{x}, @var{normalization}) % Compute the Legendre function of degree @var{n} and order % @var{m} = 0 @dots{} N. The optional argument, @var{normalization}, % may be one of @code{'unnorm'}, @code{'sch'}, or @code{'norm'}. % The default is @code{'unnorm'}. The value of @var{n} must be a % non-negative scalar integer. % % If the optional argument @var{normalization} is missing or is % @code{'unnorm'}, compute the Legendre function of degree @var{n} and % order @var{m} and return all values for @var{m} = 0 @dots{} @var{n}. % The return value has one dimension more than @var{x}. % % The Legendre Function of degree @var{n} and order @var{m}: % % @example % @group % m m 2 m/2 d^m % P(x) = (-1) * (1-x ) * ---- P (x) % n dx^m n % @end group % @end example % % @noindent % with Legendre polynomial of degree @var{n}: % % @example % @group % 1 d^n 2 n % P (x) = ------ [----(x - 1) ] % n 2^n n~ dx^n % @end group % @end example % % @noindent % @code{legendre (3, [-1.0, -0.9, -0.8])} returns the matrix: % % @example % @group % x | -1.0 | -0.9 | -0.8 % ------------------------------------ % m=0 | -1.00000 | -0.47250 | -0.08000 % m=1 | 0.00000 | -1.99420 | -1.98000 % m=2 | 0.00000 | -2.56500 | -4.32000 % m=3 | 0.00000 | -1.24229 | -3.24000 % @end group % @end example % % If the optional argument @code{normalization} is @code{'sch'}, % compute the Schmidt semi-normalized associated Legendre function. % The Schmidt semi-normalized associated Legendre function is related % to the unnormalized Legendre functions by the following: % % For Legendre functions of degree n and order 0: % % @example % @group % 0 0 % SP (x) = P (x) % n n % @end group % @end example % % For Legendre functions of degree n and order m: % % @example % @group % m m m 2(n-m)~ 0.5 % SP (x) = P (x) * (-1) * [-------] % n n (n+m)~ % @end group % @end example % % If the optional argument @var{normalization} is @code{'norm'}, % compute the fully normalized associated Legendre function. % The fully normalized associated Legendre function is related % to the unnormalized Legendre functions by the following: % % For Legendre functions of degree @var{n} and order @var{m} % % @example % @group % m m m (n+0.5)(n-m)~ 0.5 % NP (x) = P (x) * (-1) * [-------------] % n n (n+m)~ % @end group % @end example % @end deftypefn