


% -*- texinfo -*-
% @deftypefn {Function File} {[@var{r}, @var{p}, @var{k}, @var{e}] =} residue (@var{b}, @var{a})
% Compute the partial fraction expansion for the quotient of the
% polynomials, @var{b} and @var{a}.
%
% @tex
% $$
% {B(s)\over A(s)} = \sum_{m=1}^M {r_m\over (s-p_m)^e_m}
% + \sum_{i=1}^N k_i s^{N-i}.
% $$
% @end tex
% @ifnottex
%
% @example
% @group
% B(s) M r(m) N
% ---- = SUM ------------- + SUM k(i)*s^(N-i)
% A(s) m=1 (s-p(m))^e(m) i=1
% @end group
% @end example
% @end ifnottex
%
% @noindent
% where @math{M} is the number of poles (the length of the @var{r},
% @var{p}, and @var{e}), the @var{k} vector is a polynomial of order @math{N-1}
% representing the direct contribution, and the @var{e} vector specifies
% the multiplicity of the m-th residue's pole.
%
% For example,
%
% @example
% @group
% b = [1, 1, 1];
% a = [1, -5, 8, -4];
% [r, p, k, e] = residue (b, a);
% @result{} r = [-2; 7; 3]
% @result{} p = [2; 2; 1]
% @result{} k = [](0x0)
% @result{} e = [1; 2; 1]
% @end group
% @end example
%
% @noindent
% which represents the following partial fraction expansion
% @tex
% $$
% {s^2+s+1\over s^3-5s^2+8s-4} = {-2\over s-2} + {7\over (s-2)^2} + {3\over s-1}
% $$
% @end tex
% @ifnottex
%
% @example
% @group
% s^2 + s + 1 -2 7 3
% ------------------- = ----- + ------- + -----
% s^3 - 5s^2 + 8s - 4 (s-2) (s-2)^2 (s-1)
% @end group
% @end example
%
% @end ifnottex
%
% @deftypefnx {Function File} {[@var{b}, @var{a}] =} residue (@var{r}, @var{p}, @var{k})
% @deftypefnx {Function File} {[@var{b}, @var{a}] =} residue (@var{r}, @var{p}, @var{k}, @var{e})
% Compute the reconstituted quotient of polynomials,
% @var{b}(s)/@var{a}(s), from the partial fraction expansion;
% represented by the residues, poles, and a direct polynomial specified
% by @var{r}, @var{p} and @var{k}, and the pole multiplicity @var{e}.
%
% If the multiplicity, @var{e}, is not explicitly specified the multiplicity is
% determined by the script mpoles.m.
%
% For example,
%
% @example
% @group
% r = [-2; 7; 3];
% p = [2; 2; 1];
% k = [1, 0];
% [b, a] = residue (r, p, k);
% @result{} b = [1, -5, 9, -3, 1]
% @result{} a = [1, -5, 8, -4]
%
% where mpoles.m is used to determine e = [1; 2; 1]
%
% @end group
% @end example
%
% Alternatively the multiplicity may be defined explicitly, for example,
%
% @example
% @group
% r = [7; 3; -2];
% p = [2; 1; 2];
% k = [1, 0];
% e = [2; 1; 1];
% [b, a] = residue (r, p, k, e);
% @result{} b = [1, -5, 9, -3, 1]
% @result{} a = [1, -5, 8, -4]
% @end group
% @end example
%
% @noindent
% which represents the following partial fraction expansion
% @tex
% $$
% {-2\over s-2} + {7\over (s-2)^2} + {3\over s-1} + s = {s^4-5s^3+9s^2-3s+1\over s^3-5s^2+8s-4}
% $$
% @end tex
% @ifnottex
%
% @example
% @group
% -2 7 3 s^4 - 5s^3 + 9s^2 - 3s + 1
% ----- + ------- + ----- + s = --------------------------
% (s-2) (s-2)^2 (s-1) s^3 - 5s^2 + 8s - 4
% @end group
% @end example
% @end ifnottex
% @seealso{poly, roots, conv, deconv, mpoles, polyval, polyderiv, polyinteg}
% @end deftypefn