% -*- texinfo -*- % @deftypefn {Function File} {[@var{multp}, @var{indx}] =} mpoles (@var{p}) % @deftypefnx {Function File} {[@var{multp}, @var{indx}] =} mpoles (@var{p}, @var{tol}) % @deftypefnx {Function File} {[@var{multp}, @var{indx}] =} mpoles (@var{p}, @var{tol}, @var{reorder}) % Identify unique poles in @var{p} and associates their multiplicity, % ordering them from largest to smallest. % % If the relative difference of the poles is less than @var{tol}, then % they are considered to be multiples. The default value for @var{tol} % is 0.001. % % If the optional parameter @var{reorder} is zero, poles are not sorted. % % The value @var{multp} is a vector specifying the multiplicity of the % poles. @var{multp}(:) refers to multiplicity of @var{p}(@var{indx}(:)). % % For example, % % @example % @group % p = [2 3 1 1 2]; % [m, n] = mpoles(p); % @result{} m = [1; 1; 2; 1; 2] % @result{} n = [2; 5; 1; 4; 3] % @result{} p(n) = [3, 2, 2, 1, 1] % @end group % @end example % % @seealso{poly, roots, conv, deconv, polyval, polyderiv, polyinteg, residue} % @end deftypefn