% -*- texinfo -*- % @deftypefn {Function File} {} conditionalentropy_YX (@var{xy}) % % Computes the % @iftex % @tex % $H(\frac{Y}{X}) = \sum_i{P(X_i) H(\frac{Y}{X_i})$, where % $H(\frac{Y}{X_i}) = \sum_k{-P(\frac{Y_k}{X_i}) \log(P(\frac{Y_k}{X_i}))$. % @end tex % @end iftex % @ifnottex % H(Y/X) = SUM( P(Xi)*H(Y/Xi) ), where H(Y/Xi) = SUM( -P(Yk/Xi)log(P(Yk/Xi))) % @end ifnottex % The matrix @var{xy} must have @var{y} along rows and @var{x} along columns. % @iftex % @tex % $X_i = \sum{COL_i} % $Y_i = \sum{ROW_i} % $H(Y|X) = H(X,Y) - H(X)$ % @end tex % @end iftex % @ifnottex % Xi = SUM( COLi ) % Yi = SUM( ROWi ) % H(Y|X) = H(X,Y) - H(X) % @end ifnottex % @end deftypefn % @seealso{entropy, conditionalentropy_XY}