% -*- texinfo -*- % @deftypefn {Function File} {} conditionalentropy_XY (@var{x}, @var{y}) % % Computes the % @iftex % @tex % $H(\frac{X}{Y}) = \sum_i{P(Y_i) H(\frac{X}{Y_i})$, where % $H(\frac{X}{Y_i}) = \sum_k{-P(\frac{X_k}{Y_i}) \log(P(\frac{X_k}{Y_i}))$, % where $P(\frac{X_k}{Y_i} = \frac{P(X_k,Y_i)}{P(Y_i)}$. % @end tex % @end iftex % @ifnottex % H(X/Y) = SUM( P(Yi)*H(X/Yi) ) , where % H(X/Yi) = SUM( -P(Xk/Yi)log(P(Xk/Yi))), where % P(Xk/Yi) = P(Xk,Yi)/P(Yi). % @end ifnottex % The matrix @var{xy} must have @var{y} along rows and @var{x} along columns. % @iftex % @tex % $X_i = \sum{COL_i} % $Y_i = \sum{ROW_i} % $H(X|Y) = H(X,Y) - H(Y)$ % @end tex % @end iftex % @ifnottex % Xi = SUM( COLi ) % Yi = SUM( ROWi ) % H(X|Y) = H(X,Y) - H(Y) % @end ifnottex % @seealso{entropy, conditionalentropy} % @end deftypefn