Home > freetb4matlab > control > ss2sys.m

ss2sys

PURPOSE ^

% Create system structure from state-space data. May be continuous,

SYNOPSIS ^

function retsys = ss2sys (varargin )

DESCRIPTION ^

% -*- texinfo -*-
% @deftypefn {Function File} {} ss2sys (@var{a}, @var{b}, @var{c}, @var{d}, @var{tsam}, @var{n}, @var{nz}, @var{stname}, @var{inname}, @var{outname}, @var{outlist})
% Create system structure from state-space data.   May be continuous,
% discrete, or mixed (sampled data)
%
% @strong{Inputs}
% @table @var
% @item a
% @itemx b
% @itemx c
% @itemx d
% usual state space matrices.
%
% default: @var{d} = zero matrix
%
% @item   tsam
% sampling rate.  Default: @math{tsam = 0} (continuous system)
%
% @item n
% @itemx nz
% number of continuous, discrete states in the system
%
% If @var{tsam} is 0, @math{n = @code{rows}(@var{a})}, @math{nz = 0}.
%
% If @var{tsam} is greater than zero, @math{n = 0},
% @math{nz = @code{rows}(@var{a})}
%
% see below for system partitioning
%
% @item  stname
% cell array of strings of state signal names
%
% default (@var{stname}=[] on input): @code{x_n} for continuous states,
%                     @code{xd_n} for discrete states
%
% @item inname
% cell array of strings of input signal names
%
% default (@var{inname} = [] on input): @code{u_n}
%
% @item outname
% cell array of strings of input signal names
%
% default (@var{outname} = [] on input): @code{y_n}
%
% @item   outlist
%
% list of indices of outputs y that are sampled
%
% If @var{tsam} is 0, @math{outlist = []}.
%
% If @var{tsam} is greater than 0, @math{outlist = 1:@code{rows}(@var{c})}.
% @end table
%
% Unlike states, discrete/continuous outputs may appear in any order.
%
% @code{sys2ss} returns a vector @var{yd} where
% @var{yd}(@var{outlist}) = 1; all other entries of @var{yd} are 0.
%
% @strong{Outputs}
% @var{outsys} = system data structure
%
% @strong{System partitioning}
%
% Suppose for simplicity that outlist specified
% that the first several outputs were continuous and the remaining outputs
% were discrete.  Then the system is partitioned as
% @example
% @group
% x = [ xc ]  (n x 1)
%     [ xd ]  (nz x 1 discrete states)
% a = [ acc acd ]  b = [ bc ]
%     [ adc add ]      [ bd ]
% c = [ ccc ccd ]  d = [ dc ]
%     [ cdc cdd ]      [ dd ]
%
%     (cdc = c(outlist,1:n), etc.)
% @end group
% @end example
% with dynamic equations:
% @ifinfo
% @math{d/dt xc(t)     = acc*xc(t)      + acd*xd(k*tsam) + bc*u(t)}
%
% @math{xd((k+1)*tsam) = adc*xc(k*tsam) + add*xd(k*tsam) + bd*u(k*tsam)}
%
% @math{yc(t)      = ccc*xc(t)      + ccd*xd(k*tsam) + dc*u(t)}
%
% @math{yd(k*tsam) = cdc*xc(k*tsam) + cdd*xd(k*tsam) + dd*u(k*tsam)}
% @end ifinfo
% @iftex
% @tex
% $$\eqalign{
% {d \over dt} x_c(t)
%   & =   a_{cc} x_c(t)      + a_{cd} x_d(k*t_{sam}) + bc*u(t) \cr
% x_d((k+1)*t_{sam})
%   & =   a_{dc} x_c(k t_{sam}) + a_{dd} x_d(k t_{sam}) + b_d u(k t_{sam}) \cr
% y_c(t)
%  & =  c_{cc} x_c(t) + c_{cd} x_d(k t_{sam}) + d_c u(t) \cr
% y_d(k t_{sam})
%   & =  c_{dc} x_c(k t_{sam}) + c_{dd} x_d(k t_{sam}) + d_d u(k t_{sam})
% }$$
% @end tex
% @end iftex
%
% @strong{Signal partitions}
% @example
% @group
%         | continuous      | discrete               |
% ----------------------------------------------------
% states  | stname(1:n,:)   | stname((n+1):(n+nz),:) |
% ----------------------------------------------------
% outputs | outname(cout,:) | outname(outlist,:)     |
% ----------------------------------------------------
% @end group
% @end example
% where @math{cout} is the list of in 1:@code{rows}(@var{p})
% that are not contained in outlist. (Discrete/continuous outputs
% may be entered in any order desired by the user.)
%
% @strong{Example}
% @example
% octave:1> a = [1 2 3; 4 5 6; 7 8 10];
% octave:2> b = [0 0 ; 0 1 ; 1 0];
% octave:3> c = eye (3);
% octave:4> sys = ss (a, b, c, [], 0, 3, 0, 
% >                   @{'volts', 'amps', 'joules'@});
% octave:5> sysout(sys);
% Input(s)
%         1: u_1
%         2: u_2
%
% Output(s):
%         1: y_1
%         2: y_2
%         3: y_3
%
% state-space form:
% 3 continuous states, 0 discrete states
% State(s):
%         1: volts
%         2: amps
%         3: joules
%
% A matrix: 3 x 3
%    1   2   3
%    4   5   6
%    7   8  10
% B matrix: 3 x 2
%   0  0
%   0  1
%   1  0
% C matrix: 3 x 3
%   1  0  0
%   0  1  0
%   0  0  1
% D matrix: 3 x 3
%   0  0
%   0  0
%   0  0
% @end example
% Notice that the @math{D} matrix is constructed  by default to the
% correct dimensions.  Default input and output signals names were assigned
% since none were given.
% @end deftypefn

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:
Generated on Fri 22-May-2009 15:13:00 by m2html © 2003