% -*- texinfo -*- % @deftypefn {Function File} {[@var{mag}, @var{phase}, @var{w}] =} nichols (@var{sys}, @var{w}, @var{outputs}, @var{inputs}) % Produce Nichols plot of a system. % % @strong{Inputs} % @table @var % @item sys % System data structure (must be either purely continuous or discrete; % see @command{is_digital}). % @item w % Frequency values for evaluation. % @itemize % @item if sys is continuous, then nichols evaluates @math{G(jw)}. % @item if sys is discrete, then nichols evaluates @math{G(exp(jwT))}, % where @var{T}=@var{sys}. @var{tsam} is the system sampling time. % @item the default frequency range is selected as follows (These % steps are @strong{not} performed if @var{w} is specified): % @enumerate % @item via routine @command{__bodquist__}, isolate all poles and zeros away from % @var{w}=0 (@math{jw=0} or @math{exp(jwT)=1}) and select the frequency range % based on the breakpoint locations of the frequencies. % @item if sys is discrete time, the frequency range is limited to jwT in % @iftex % @tex % $ [0, 2p\pi] $. % @end tex % @end iftex % @ifinfo % [0,2p*pi]. % @end ifinfo % @item A ``smoothing'' routine is used to ensure that the plot phase does % not change excessively from point to point and that singular points % (e.g., crossovers from +/- 180) are accurately shown. % @end enumerate % @end itemize % @item outputs % @itemx inputs % the names or indices of the output(s) and input(s) to be used in the % frequency response; see @command{sysprune}. % @end table % @strong{Outputs} % @table @var % @item mag % @itemx phase % The magnitude and phase of the frequency response @math{G(jw)} or % @math{G(exp(jwT))} at the selected frequency values. % @item w % The vector of frequency values used. % @end table % If no output arguments are given, @command{nichols} plots the results to the screen. % Descriptive labels are automatically placed. See @command{xlabel}, % @command{ylabel}, and @command{title}. % % Note: if the requested plot is for an @acronym{MIMO} system, @var{mag} is set to % @iftex % @tex % $ \Vert G(jw) \Vert $ or $ \Vert G( {\rm exp}(jwT) \Vert $ % @end tex % @end iftex % @ifinfo % |G(jw)| or |G(exp(jwT))| % @end ifinfo % and phase information is not computed. % @end deftypefn