% -*- texinfo -*- % @deftypefn {Function File} {[@var{retval}, @var{pc}, @var{pf}] =} hinfsyn_chk (@var{a}, @var{b1}, @var{b2}, @var{c1}, @var{c2}, @var{d12}, @var{d21}, @var{g}, @var{ptol}) % Called by @code{hinfsyn} to see if gain @var{g} satisfies conditions in % Theorem 3 of % Doyle, Glover, Khargonekar, Francis, @cite{State Space Solutions to Standard} % @iftex % @tex % $ { \cal H }_2 $ @cite{and} $ { \cal H }_\infty $ % @end tex % @end iftex % @ifinfo % @cite{H-2 and H-infinity} % @end ifinfo % @cite{Control Problems}, @acronym{IEEE} @acronym{TAC} August 1989. % % @strong{Warning:} do not attempt to use this at home; no argument % checking performed. % % @strong{Inputs} % % As returned by @code{is_dgkf}, except for: % @table @var % @item g % candidate gain level % @item ptol % as in @code{hinfsyn} % @end table % % @strong{Outputs} % @table @var % @item retval % 1 if g exceeds optimal Hinf closed loop gain, else 0 % @item pc % solution of ``regulator'' % @iftex % @tex % $ { \cal H }_\infty $ % @end tex % @end iftex % @ifinfo % H-infinity % @end ifinfo % @acronym{ARE} % @item pf % solution of ``filter'' % @iftex % @tex % $ { \cal H }_\infty $ % @end tex % @end iftex % @ifinfo % H-infinity % @end ifinfo % @acronym{ARE} % @end table % Do not attempt to use this at home; no argument checking performed. % @end deftypefn