% -*- texinfo -*- % @deftypefn {Function File} {} dhinfdemo % Demonstrate the functions available to design a discrete % @iftex % @tex % $ { \cal H }_\infty $ % @end tex % @end iftex % @ifinfo % H-infinity % @end ifinfo % controller. This is not a true discrete design. The % design is carried out in continuous time while the effect of sampling % is described by a bilinear transformation of the sampled system. % This method works quite well if the sampling period is 'small' % compared to the plant time constants. % % Continuous plant: % @iftex % @tex % $$ G(s) = { 1 \over (s+2) (s+1) } $$ % @end tex % @end iftex % @ifinfo % @example % @group % 1 % G(s) = -------------- % (s + 2)(s + 1) % @end group % @end example % @end ifinfo % % Discretised plant with @acronym{ZOH} (Sampling period = @var{Ts} = 1 second): % @iftex % @tex % $$ G(z) = { 0.39958z + 0.14700 \over (z - 0.36788) (z - 0.13533) } $$ % @end tex % @end iftex % @ifinfo % @example % @group % 0.39958z + 0.14700 % G(z) = -------------------------- % (z - 0.36788)(z - 0.13533) % @end group % @end example % @end ifinfo % % @example % @group % +----+ % -------------------->| W1 |---> v1 % z | +----+ % ----|-------------+ | T | => min. % | | vz infty % | +---+ v +----+ % *--->| G |--->O--*-->| W2 |---> v2 % | +---+ | +----+ % | | % | +---+ | % -----| K |<------- % +---+ % @end group % @end example % % @noindent % W1 and W2 are the robustness and performancs weighting functions. % @end deftypefn