% -*- texinfo -*- % @deftypefn {Function File} {@var{x} =} dare (@var{a}, @var{b}, @var{q}, @var{r}, @var{opt}) % % Return the solution, @var{x} of the discrete-time algebraic Riccati % equation % @iftex % @tex % $$ % A^TXA - X + A^TXB (R + B^TXB)^{-1} B^TXA + Q = 0 % $$ % @end tex % @end iftex % @ifinfo % @example % a' x a - x + a' x b (r + b' x b)^(-1) b' x a + q = 0 % @end example % @end ifinfo % @noindent % % @strong{Inputs} % @table @var % @item a % @var{n} by @var{n} matrix; % % @item b % @var{n} by @var{m} matrix; % % @item q % @var{n} by @var{n} matrix, symmetric positive semidefinite, or a @var{p} by @var{n} matrix, % In the latter case @math{q:=q'*q} is used; % % @item r % @var{m} by @var{m}, symmetric positive definite (invertible); % % @item opt % (optional argument; default = @code{'B'}): % String option passed to @code{balance} prior to ordered @var{QZ} decomposition. % @end table % % @strong{Output} % @table @var % @item x % solution of @acronym{DARE}. % @end table % % @strong{Method} % Generalized eigenvalue approach (Van Dooren; @acronym{SIAM} J. % Sci. Stat. Comput., Vol 2) applied to the appropriate symplectic pencil. % % See also: Ran and Rodman, @cite{Stable Hermitian Solutions of Discrete % Algebraic Riccati Equations}, Mathematics of Control, Signals and % Systems, Vol 5, no 2 (1992), pp 165--194. % @seealso{balance, are} % @end deftypefn