Wackermann calculates the global field strength SIGMA, the global frequency PHI and a measure of spatial complexity OMEGA [1]. A stationary and a time-varying (adaptive) estimator is implemented [SIGMA,PHI,OMEGA] = wackermann(...) [...] = wackermann(S,0) calculates stationary Wackermann parameter [...] = wackermann(S,UC) with 0<UC<1, calculates time-varying Wackermann parameter using exponential window [...] = wackermann(S,N) with N>1, calculates time-varying Wackermann parameter using rectangulare window of length N [...] = wackermann(S,B,A) with B>=1 oder length(B)>1, calulates time-varying Wackermann parameters using transfer function B(z)/A(z) for windowing S data (each channel is a column) UC update coefficient B,A filter coefficients (window function) Remark: estimating of Omega requires the eigenvalues, the adaptive estimator utilized the adaptive eigenanalysis method [2]. see also: TDP, BARLOW, HJORTH REFERENCE(S): [1] Jiri Wackermann, Towards a quantitative characterization of functional states of the brain: from the non-linear methodology to the global linear descriptor. International Journal of Psychophysiology, 34 (1999) 65-80. [2] Bin Yang, Projection approximation subspace tracking. IEEE Trans. on Signal processing, vol. 43, no. 1 jan. 2005, pp. 95-107. [3] Saito N., Kuginuki T., Yagyu T., Kinoshita T., Koenig T., Pascual-Marqui R. D., Kochi K., Wackermann J., and Lemann D., 1998. Global, regional and local measures of complexity of multichannel EEG in acute, neurolepticnaive, first-break schizophrenics. Society of Biological Psychiatry. 43:794–802.