


TVAAR wrapper around adaptive autoregressive estimator.
X = tvaar(signal,p,UC)
X = tvaar(signal,X)
INPUT:
X.MOP=[d,p,q]
d = 1: with mean term; d=0: without mean term
p: order of AutoRegressive part
q: order of Moving Average
X.UC update coefficient
X.Mode = [amode,vmode]: choose estimation algorithm
X.Z0 covariance of state estimates
X.z0 initial state vector
X.W0 covariance of system noise
X.V0 variance of observation noise
OUTPUT:
X.Z0 average covariance of state estimates
X.z0 average state vector
X.W0 covariance of system noise
X.V0 variance of prediction error
X.AAR estimated AAR parameters
X.E prediction error, residuum,
X.PE time-varying variance of residual process
REFERENCES:
[1] Schlögl A.(2000)
The electroencephalogram and the adaptive autoregressive model: theory and applications
Shaker Verlag, Aachen, Germany,(ISBN3-8265-7640-3).
[2] Schlögl A, Lee FY, Bischof H, Pfurtscheller G
Characterization of Four-Class Motor Imagery EEG Data for the BCI-Competition 2005.
Journal of neural engineering 2 (2005) 4, S. L14-L22