TVAAR wrapper around adaptive autoregressive estimator. X = tvaar(signal,p,UC) X = tvaar(signal,X) INPUT: X.MOP=[d,p,q] d = 1: with mean term; d=0: without mean term p: order of AutoRegressive part q: order of Moving Average X.UC update coefficient X.Mode = [amode,vmode]: choose estimation algorithm X.Z0 covariance of state estimates X.z0 initial state vector X.W0 covariance of system noise X.V0 variance of observation noise OUTPUT: X.Z0 average covariance of state estimates X.z0 average state vector X.W0 covariance of system noise X.V0 variance of prediction error X.AAR estimated AAR parameters X.E prediction error, residuum, X.PE time-varying variance of residual process REFERENCES: [1] Schlögl A.(2000) The electroencephalogram and the adaptive autoregressive model: theory and applications Shaker Verlag, Aachen, Germany,(ISBN3-8265-7640-3). [2] Schlögl A, Lee FY, Bischof H, Pfurtscheller G Characterization of Four-Class Motor Imagery EEG Data for the BCI-Competition 2005. Journal of neural engineering 2 (2005) 4, S. L14-L22