


LPC Linear prediction coefficients
The Burg-method is used to estimate the prediction coefficients
A = lpc(Y [,P]) finds the coefficients A=[ 1 A(2) ... A(N+1) ],
of an Pth order forward linear predictor
Xp(n) = -A(2)*X(n-1) - A(3)*X(n-2) - ... - A(N+1)*X(n-P)
such that the sum of the squares of the errors
err(n) = X(n) - Xp(n)
is minimized. X can be a vector or a matrix. If X is a matrix
containing a separate signal in each column, LPC returns a model
estimate for each column in the rows of A. N specifies the order
of the polynomial A(z).
If you do not specify a value for P, LPC uses a default P = length(X)-1.
see also ACOVF ACORF AR2POLY RC2AR DURLEV SUMSKIPNAN LATTICE