Time Series Analysis (Ver 3.10) Schloegl A. (1996-2003,2008) Time Series Analysis - A Toolbox for the use with Matlab. WWW: http://pub.ist.ac.at/~schloegl/matlab/tsa/ $Id: content.m 5090 2008-06-05 08:12:04Z schloegl $ Copyright (C) 1996-2003,2008 by Alois Schloegl <a.schloegl@ieee.org> Time Series Analysis - a toolbox for the use with Matlab aar adaptive autoregressive estimator acovf (*) Autocovariance function acorf (acf) (*) autocorrelation function pacf (*) partial autocorrelation function, includes signifcance test and confidence interval parcor (*) partial autocorrelation function biacovf biautocovariance function (3rd order cumulant) bispec Bi-spectrum durlev (*) solves Yule-Walker equation - converts ACOVF into AR parameters lattice (*) calcultes AR parameters with lattice method lpc (*) calculates the prediction coefficients form a given time series invest0 (*) a prior investigation (used by invest1) invest1 (*) investigates signal (useful for 1st evaluation of the data) selmo (*) Select Order of Autoregressive model using different criteria histo (*) histogram hup (*) test Hurwitz polynomials ucp (*) test Unit Circle Polynomials y2res (*) computes mean, variance, skewness, kurtosis, entropy, etc. from data series ar_spa (*) spectral analysis based on the autoregressive model detrend (*) removes trend, can handle missing values, non-equidistant sampled data flix floating index, interpolates data for non-interger indices quantiles calculates quantiles Multivariate analysis (planned in future) mvar multivariate (vector) autoregressive estimation mvfilter multivariate filter arfit2 provides compatibility to ARFIT [Schneider and Neumaier, 2001]