Adaptive Mean-AutoRegressive-Moving-Average model estimation [z,E,ESU,REV,V,Z,SPUR] = amarma(y, mode, MOP, UC, z0, Z0, V0, W); Estimates AAR parameters with Kalman filter algorithm y(t) = sum_i(a(i,t)*y(t-i)) + mu(t) + E(t) State space model: z(t)=G*z(t-1) + w(t) w(t)=N(0,W) y(t)=H*z(t) + v(t) v(t)=N(0,V) G = I, z = [�(t)/(1-sum_i(a(i,t))),a_1(t-1),..,a_p(t-p),b_1(t-1),...,b_q(t-q)]; H = [1,y(t-1),..,y(t-p),e(t-1),...,e(t-q)]; W = E{(z(t)-G*z(t-1))*(z(t)-G*z(t-1))'} V = E{(y(t)-H*z(t-1))*(y(t)-H*z(t-1))'} Input: y Signal (AR-Process) Mode [0,0] uses V0 and W MOP Model order [m,p,q], default [0,10,0] m=1 includes the mean term, m=0 does not. p and q must be positive integers it is recommended to set q=0. UC Update Coefficient, default 0 z0 Initial state vector Z0 Initial Covariance matrix Output: z AR-Parameter E error process (Adaptively filtered process) REV relative error variance MSE/MSY see also: AAR REFERENCE(S): [1] A. Schloegl (2000), The electroencephalogram and the adaptive autoregressive model: theory and applications. ISBN 3-8265-7640-3 Shaker Verlag, Aachen, Germany. [2] Schl�l A, Lee FY, Bischof H, Pfurtscheller G Characterization of Four-Class Motor Imagery EEG Data for the BCI-Competition 2005. Journal of neural engineering 2 (2005) 4, S. L14-L22 More references can be found at http://pub.ist.ac.at/~schloegl/publications/