% -*- texinfo -*- % @deftypefn {Function File} {@var{x} =} raylinv (@var{p}, @var{sigma}) % Compute the quantile of the Rayleigh distribution. The quantile is the % inverse of the cumulative distribution function. % % @subheading Arguments % % @itemize @bullet % @item % @var{p} is the cumulative distribution. The elements of @var{p} must be % probabilities. % % @item % @var{sigma} is the parameter of the Rayleigh distribution. The elements % of @var{sigma} must be positive. % @end itemize % @var{p} and @var{sigma} must be of common size or one of them must be % scalar. % % @subheading Return values % % @itemize @bullet % @item % @var{x} is the quantile of the Rayleigh distribution at each element of % @var{p} and corresponding parameter @var{sigma}. % @end itemize % % @subheading Examples % % @example % @group % p = 0:0.1:0.5; % sigma = 1:6; % x = raylinv (p, sigma) % @end group % % @group % x = raylinv (p, 0.5) % @end group % @end example % % @subheading References % % @enumerate % @item % Wendy L. Martinez and Angel R. Martinez. @cite{Computational Statistics % Handbook with MATLAB}. Appendix E, pages 547-557, Chapman & Hall/CRC, % 2001. % % @item % Athanasios Papoulis. @cite{Probability, Random Variables, and Stochastic % Processes}. pages 104 and 148, McGraw-Hill, New York, second edition, % 1984. % @end enumerate % @end deftypefn