% -*- texinfo -*- % @deftypefn {Function File} @var{y} = pdist (@var{x}) % @deftypefnx {Function File} @var{y} = pdist (@var{x}, @var{metric}) % @deftypefnx {Function File} @var{y} = pdist (@var{x}, @var{metric}, @var{metricarg}, @dots{}) % % Return the distance between any two rows in @var{x}. % % @var{x} is the @var{n}x@var{d} matrix representing @var{q} row vectors of % size @var{d}. % % The output is a dissimilarity matrix formatted as a row vector % @var{y}, @math{(n-1)*n/2} long, where the distances are in % the order [(1, 2) (1, 3) @dots{} (2, 3) @dots{} (n-1, n)]. You can % use the @code{squareform} function to display the distances between % the vectors arranged into an @var{n}x@var{n} matrix. % % @code{metric} is an optional argument specifying how the distance is % computed. It can be any of the following ones, defaulting to % 'euclidean', or a user defined function that takes two arguments % @var{x} and @var{y} plus any number of optional arguments, % where @var{x} is a row vector and and @var{y} is a matrix having the % same number of columns as @var{x}. @code{metric} returns a column % vector where row @var{i} is the distance between @var{x} and row % @var{i} of @var{y}. Any additional arguments after the @code{metric} % are passed as metric (@var{x}, @var{y}, @var{metricarg1}, % @var{metricarg2} @dots{}). % % Predefined distance functions are: % % @table @samp % @item 'euclidean' % Euclidean distance (default). % % @item 'seuclidean' % Standardized Euclidean distance. Each coordinate in the sum of % squares is inverse weighted by the sample variance of that % coordinate. % % @item 'mahalanobis' % Mahalanobis distance: @seealso{mahalanobis}. % % @item 'cityblock' % City Block metric, aka Manhattan distance. % % @item 'minkowski' % Minkowski metric. Accepts a numeric parameter @var{p}: for @var{p}=1 % this is the same as the cityblock metric, with @var{p}=2 (default) it % is equal to the euclidean metric. % % @item 'cosine' % One minus the cosine of the included angle between rows, seen as % vectors. % % @item 'correlation' % One minus the sample correlation between points (treated as % sequences of values). % % @item 'spearman' % One minus the sample Spearman's rank correlation between % observations, treated as sequences of values. % % @item 'hamming' % Hamming distance: the quote of the number of coordinates that differ. % % @item 'jaccard' % One minus the Jaccard coefficient, the quote of nonzero % coordinates that differ. % % @item 'chebychev' % Chebychev distance: the maximum coordinate difference. % @end table % @seealso{linkage,squareform} % @end deftypefn