% -*- texinfo -*- % @deftypefn {Function File} {@var{p} =} mvtcdf (@var{x}, @var{sigma}, @var{nu}) % @deftypefnx {Function File} {} mvtcdf (@var{a}, @var{x}, @var{sigma}, @var{nu}) % @deftypefnx {Function File} {[@var{p}, @var{err}] =} mvtcdf (@dots{}) % Compute the cumulative distribution function of the multivariate % Student's t distribution. % % @subheading Arguments % % @itemize @bullet % @item % @var{x} is the upper limit for integration where each row corresponds % to an observation. % % @item % @var{sigma} is the correlation matrix. % % @item % @var{nu} is the degrees of freedom. % % @item % @var{a} is the lower limit for integration where each row corresponds % to an observation. @var{a} must have the same size as @var{x}. % @end itemize % % @subheading Return values % % @itemize @bullet % @item % @var{p} is the cumulative distribution at each row of @var{x} and % @var{a}. % % @item % @var{err} is the estimated error. % @end itemize % % @subheading Examples % % @example % @group % x = [1 2]; % sigma = [1.0 0.5; 0.5 1.0]; % nu = 4; % p = mvtcdf (x, sigma, nu) % @end group % % @group % a = [-inf 0]; % p = mvtcdf (a, x, sigma, nu) % @end group % @end example % % @subheading References % % @enumerate % @item % Alan Genz and Frank Bretz. Numerical Computation of Multivariate % t-Probabilities with Application to Power Calculation of Multiple % Constrasts. @cite{Journal of Statistical Computation and Simulation}, % 63, pages 361-378, 1999. % @end enumerate % @end deftypefn