% -*- texinfo -*- % @deftypefn {Function File} {@var{q} =} quantile (@var{x}, @var{p}) % @deftypefnx {Function File} {@var{q} =} quantile (@var{x}, @var{p}, @var{dim}) % @deftypefnx {Function File} {@var{q} =} quantile (@var{x}, @var{p}, @var{dim}, @var{method}) % For a sample, @var{x}, calculate the quantiles, @var{q}, corresponding to % the cumulative probability values in @var{p}. All non-numeric values (NaNs) of % @var{x} are ignored. % % If @var{x} is a matrix, compute the quantiles for each column and % return them in a matrix, such that the i-th row of @var{q} contains % the @var{p}(i)th quantiles of each column of @var{x}. % % The optional argument @var{dim} determines the dimension along which % the percentiles are calculated. If @var{dim} is omitted, and @var{x} is % a vector or matrix, it defaults to 1 (column wise quantiles). In the % instance that @var{x} is a N-d array, @var{dim} defaults to the first % dimension whose size greater than unity. % % The methods available to calculate sample quantiles are the nine methods % used by R (http://www.r-project.org/). The default value is METHOD = 5. % % Discontinuous sample quantile methods 1, 2, and 3 % % @enumerate 1 % @item Method 1: Inverse of empirical distribution function. % @item Method 2: Similar to method 1 but with averaging at discontinuities. % @item Method 3: SAS definition: nearest even order statistic. % @end enumerate % % Continuous sample quantile methods 4 through 9, where p(k) is the linear % interpolation function respecting each methods' representative cdf. % % @enumerate 4 % @item Method 4: p(k) = k / n. That is, linear interpolation of the empirical cdf. % @item Method 5: p(k) = (k - 0.5) / n. That is a piecewise linear function where % the knots are the values midway through the steps of the empirical cdf. % @item Method 6: p(k) = k / (n + 1). % @item Method 7: p(k) = (k - 1) / (n - 1). % @item Method 8: p(k) = (k - 1/3) / (n + 1/3). The resulting quantile estimates % are approximately median-unbiased regardless of the distribution of @var{x}. % @item Method 9: p(k) = (k - 3/8) / (n + 1/4). The resulting quantile estimates % are approximately unbiased for the expected order statistics if @var{x} is % normally distributed. % @end enumerate % % Hyndman and Fan (1996) recommend method 8. Maxima, S, and R % (versions prior to 2.0.0) use 7 as their default. Minitab and SPSS % use method 6. @sc{matlab} uses method 5. % % References: % % @itemize @bullet % @item Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New % S Language. Wadsworth & Brooks/Cole. % % @item Hyndman, R. J. and Fan, Y. (1996) Sample quantiles in % statistical packages, American Statistician, 50, 361--365. % % @item R: A Language and Environment for Statistical Computing; % @url{http://cran.r-project.org/doc/manuals/fullrefman.pdf}. % @end itemize % @end deftypefn