% -*- texinfo -*- % @deftypefn {Function File} {[@var{beta}, @var{sigma}, @var{r}] =} ols (@var{y}, @var{x}) % Ordinary least squares estimation for the multivariate model % @tex % $y = x b + e$ % with % $\bar{e} = 0$, and cov(vec($e$)) = kron ($s, I$) % @end tex % @ifnottex % @math{y = x b + e} with % @math{mean (e) = 0} and @math{cov (vec (e)) = kron (s, I)}. % @end ifnottex % where % @tex % $y$ is a $t \times p$ matrix, $x$ is a $t \times k$ matrix, % $b$ is a $k \times p$ matrix, and $e$ is a $t \times p$ matrix. % @end tex % @ifnottex % @math{y} is a @math{t} by @math{p} matrix, @math{x} is a @math{t} by % @math{k} matrix, @math{b} is a @math{k} by @math{p} matrix, and % @math{e} is a @math{t} by @math{p} matrix. % @end ifnottex % % Each row of @var{y} and @var{x} is an observation and each column a % variable. % % The return values @var{beta}, @var{sigma}, and @var{r} are defined as % follows. % % @table @var % @item beta % The OLS estimator for @var{b}, @code{@var{beta} = pinv (@var{x}) * % @var{y}}, where @code{pinv (@var{x})} denotes the pseudoinverse of % @var{x}. % % @item sigma % The OLS estimator for the matrix @var{s}, % % @example % @group % @var{sigma} = (@var{y}-@var{x}*@var{beta})' % * (@var{y}-@var{x}*@var{beta}) % / (@var{t}-rank(@var{x})) % @end group % @end example % % @item r % The matrix of OLS residuals, @code{@var{r} = @var{y} - @var{x} * % @var{beta}}. % @end table % @end deftypefn