% -*- texinfo -*- % @deftypefn {Function File} {} kendall (@var{x}, @var{y}) % Compute Kendall's @var{tau} for each of the variables specified by % the input arguments. % % For matrices, each row is an observation and each column a variable; % vectors are always observations and may be row or column vectors. % % @code{kendall (@var{x})} is equivalent to @code{kendall (@var{x}, % @var{x})}. % % For two data vectors @var{x}, @var{y} of common length @var{n}, % Kendall's @var{tau} is the correlation of the signs of all rank % differences of @var{x} and @var{y}; i.e., if both @var{x} and % @var{y} have distinct entries, then % % @tex % $$ \tau = {1 \over n(n-1)} \sum_{i,j} {\rm sign}(q_i-q_j) {\rm sign}(r_i-r_j) $$ % @end tex % @ifnottex % @example % @group % 1 % tau = ------- SUM sign (q(i) - q(j)) * sign (r(i) - r(j)) % n (n-1) i,j % @end group % @end example % @end ifnottex % % @noindent % in which the % @tex % $q_i$ and $r_i$ % @end tex % @ifnottex % @var{q}(@var{i}) and @var{r}(@var{i}) % @end ifnottex % are the ranks of % @var{x} and @var{y}, respectively. % % If @var{x} and @var{y} are drawn from independent distributions, % Kendall's @var{tau} is asymptotically normal with mean 0 and variance % @tex % ${2 (2n+5) \over 9n(n-1)}$. % @end tex % @ifnottex % @code{(2 * (2@var{n}+5)) / (9 * @var{n} * (@var{n}-1))}. % @end ifnottex % @end deftypefn