% -*- texinfo -*- % @deftypefn {Function File} {} invhilb (@var{n}) % Return the inverse of a Hilbert matrix of order @var{n}. This can be % computed exactly using % @tex % $$\eqalign{ % A_{ij} &= -1^{i+j} (i+j-1) % \left( \matrix{n+i-1 \cr n-j } \right) % \left( \matrix{n+j-1 \cr n-i } \right) % \left( \matrix{i+j-2 \cr i-2 } \right)^2 \cr % &= { p(i)p(j) \over (i+j-1) } % }$$ % where % $$ % p(k) = -1^k \left( \matrix{ k+n-1 \cr k-1 } \right) % \left( \matrix{ n \cr k } \right) %$$ % @end tex % @ifnottex % @example % @group % % (i+j) /n+i-1\ /n+j-1\ /i+j-2\ 2 % A(i,j) = -1 (i+j-1)( )( ) ( ) % \ n-j / \ n-i / \ i-2 / % % = p(i) p(j) / (i+j-1) % % @end group % @end example % where % @example % @group % k /k+n-1\ /n... % p(k) = -1 ( ) ( ) % \ k-1 / \k/ % @end group % @end example % @end ifnottex % % The validity of this formula can easily be checked by expanding % the binomial coefficients in both formulas as factorials. It can % be derived more directly via the theory of Cauchy matrices: % see J. W. Demmel, Applied Numerical Linear Algebra, page 92. % % Compare this with the numerical calculation of @code{inverse (hilb (n))}, % which suffers from the ill-conditioning of the Hilbert matrix, and the % finite precision of your computer's floating point arithmetic. % @seealso{hankel, vander, sylvester_matrix, hilb, toeplitz} % @end deftypefn