% -*- texinfo -*- % @deftypefn {Function File} {} compan (@var{c}) % Compute the companion matrix corresponding to polynomial coefficient % vector @var{c}. % % The companion matrix is % @tex % $$ % A = \left[\matrix{ % -c_2/c_1 & -c_3/c_1 & \cdots & -c_N/c_1 & -c_{N+1}/c_1\cr % 1 & 0 & \cdots & 0 & 0 \cr % 0 & 1 & \cdots & 0 & 0 \cr % \vdots & \vdots & \ddots & \vdots & \vdots \cr % 0 & 0 & \cdots & 1 & 0}\right]. % $$ % @end tex % @ifnottex % % @c Set example in small font to prevent overfull line % @smallexample % _ _ % | -c(2)/c(1) -c(3)/c(1) @dots{} -c(N)/c(1) -c(N+1)/c(1) | % | 1 0 @dots{} 0 0 | % | 0 1 @dots{} 0 0 | % A = | . . . . . | % | . . . . . | % | . . . . . | % |_ 0 0 @dots{} 1 0 _| % @end smallexample % @end ifnottex % % The eigenvalues of the companion matrix are equal to the roots of the % polynomial. % @seealso{poly, roots, residue, conv, deconv, polyval, polyderiv, % polyinteg} % @end deftypefn