% -*- texinfo -*- % @deftypefn {Function File} {@var{x} =} lsqnonneg (@var{c}, @var{d}) % @deftypefnx {Function File} {@var{x} =} lsqnonneg (@var{c}, @var{d}, @var{x0}) % @deftypefnx {Function File} {[@var{x}, @var{resnorm}] =} lsqnonneg (@dots{}) % @deftypefnx {Function File} {[@var{x}, @var{resnorm}, @var{residual}] =} lsqnonneg (@dots{}) % @deftypefnx {Function File} {[@var{x}, @var{resnorm}, @var{residual}, @var{exitflag}] =} lsqnonneg (@dots{}) % @deftypefnx {Function File} {[@var{x}, @var{resnorm}, @var{residual}, @var{exitflag}, @var{output}] =} lsqnonneg (@dots{}) % @deftypefnx {Function File} {[@var{x}, @var{resnorm}, @var{residual}, @var{exitflag}, @var{output}, @var{lambda}] =} lsqnonneg (@dots{}) % Minimize @code{norm (@var{c}*@var{x}-d)} subject to @code{@var{x} >= % 0}. @var{c} and @var{d} must be real. @var{x0} is an optional % initial guess for @var{x}. % % Outputs: % @itemize @bullet % @item resnorm % % The squared 2-norm of the residual: norm(@var{c}*@var{x}-@var{d})^2 % @item residual % % The residual: @var{d}-@var{c}*@var{x} % @item exitflag % % An indicator of convergence. 0 indicates that the iteration count % was exceeded, and therefore convergence was not reached; >0 indicates % that the algorithm converged. (The algorithm is stable and will % converge given enough iterations.) % @item output % % A structure with two fields: % @itemize @bullet % @item 'algorithm': The algorithm used ('nnls') % @item 'iterations': The number of iterations taken. % @end itemize % @item lambda % % Not implemented. % @end itemize % @seealso{optimset} % @end deftypefn