% -*- texinfo -*- % @deftypefn {Function File} {} lfdif (@var{a}, @var{b}, @var{alpha}, @var{beta}, @var{n}) % Approximate the solution of a boundary-value problem. The problem is % defined as % % @iftex % @example % @tex % $y'' = p(x) y' + q(x) y + r(x), a \le x \le b$, $y(a) = \alpha$, $y(b) = \beta$ % @end tex % @end example % @end iftex % @ifnottex % @example % y''=p(x)*y' + q(x)*y + r(x), a<=x<=b, y(a)=alpha, y(b)=beta % @end example % @end ifnottex % % @noindent % by the linear finite-diffence method. The inputs are % % @table @asis % @item a, b % Endpoints % @item alpha, beta % boundary conditions % @item n % An integer value greater than or equal to 2 % @end table % @end deftypefn