% -*- texinfo -*- % @deftypefn {Function File} {}[@var{net}] = train (@var{MLPnet},@var{mInputN},@var{mOutput},@var{[]},@var{[]},@var{VV}) % A neural feed-forward network will be trained with @code{train} % % @example % [net,tr,out,E] = train(MLPnet,mInputN,mOutput,[],[],VV); % @end example % @noindent % % left side arguments: % @example % net: the trained network of the net structure @code{MLPnet} % tr : % out: % E : Error % @end example % @noindent % % right side arguments: % @example % MLPnet : the untrained network, created with @code{newff} % mInputN: normalized input matrix % mOutput: output matrix (normalized or not) % [] : unused parameter % [] : unused parameter % VV : validize structure % @end example % @end deftypefn