% -*- texinfo -*- % @deftypefn {Function File} {}[@var{mTrain}, @var{mTest}, @var{mVali}] = subset (@var{mData},@var{nTargets},@var{iOpti},@var{fTest},@var{fVali}) % @code{subset} splits the main data matrix which contains inputs and targets into 2 or 3 subsets % depending on the parameters. % % The first parameter @var{mData} must be in row order. This means if the network % contains three inputs, the matrix must be have 3 rows and x columns to define the % data for the inputs. And some more rows for the outputs (targets), e.g. a neural network % with three inputs and two outputs must have 5 rows with x columns~ % The second parameter @var{nTargets} defines the number or rows which contains the target values~ % The third argument @code{iOpti} is optional and can have three status: % 0: no optimization % 1: will randomise the column order and order the columns containing min and max values to be in the train set % 2: will NOT randomise the column order, but order the columns containing min and max values to be in the train set % default value is @code{1} % The fourth argument @code{fTest} is also optional and defines how % much data sets will be in the test set. Default value is @code{1/3} % The fifth parameter @code{fTrain} is also optional and defines how % much data sets will be in the train set. Default value is @code{1/6} % So we have 50% of all data sets which are for training with the default values. % % @example % [mTrain, mTest] = subset(mData,1) % returns three subsets of the complete matrix % with randomized and optimized columns~ % @end example % @example % [mTrain, mTest] = subset(mData,1,) % returns two subsets % @end example % % @end deftypefn