% -*- texinfo -*- % @deftypefn {Function File} {@var{net}} = newff (@var{Pr},@var{ss},@var{trf},@var{btf},@var{blf},@var{pf}) % @code{newff} create a feed-forward backpropagation network % % @example % Pr - R x 2 matrix of min and max values for R input elements % Ss - 1 x Ni row vector with size of ith layer, for N layers % trf - 1 x Ni list with transfer function of ith layer, % default = 'tansig' % btf - Batch network training function, % default = 'trainlm' % blf - Batch weight/bias learning function, % default = 'learngdm' % pf - Performance function, % default = 'mse'. % @end example % % @example % EXAMPLE 1 % Pr = [0.1 0.8; 0.1 0.75; 0.01 0.8]; % it's a 3 x 2 matrix, this means 3 input neurons % % net = newff(Pr, [4 1], @{'tansig','purelin'@}, 'trainlm', 'learngdm', 'mse'); % @end example % % @end deftypefn