% -*- texinfo -*- % @deftypefn {Function File} {} mutualinformation (@var{xy}) % % Computes the mutual information of the given channel transition matrix. % By definition we have @code{I(@var{x}, @var{y})} given as % @code{I(@var{x}:@var{y}) = SUM(P(@var{x},@var{y}) * log2(p(@var{x},@var{y}) % / p(@var{x})/p(@var{y}))) = relative_entropy(P(@var{x},@var{y}) | % P(@var{x}),P(@var{y}))} % Mutual Information, is amount of information, one variable % has, about the other. It is the reduction of uncertainity. % This is a symmetric function. % @seealso{entropy, conditionalentropy} % @end deftypefn