% -*- texinfo -*- % @deftypefn {Function File} {} systematize (@var{G}) % % Given @var{G}, extract P partiy check matrix. Assume row-operations in GF(2). % @var{G} is of size KxN, when decomposed through row-operations into a @var{I} of size KxK % identity matrix, and a parity check matrix @var{P} of size Kx(N-K). % % Most arbitrary code with a given generator matrix @var{G}, can be converted into its % systematic form using this function. % % This function returns 2 values, first is default being @var{Gx} the systematic version of % the @var{G} matrix, and then the parity check matrix @var{P}. % % @example % @group % G=[1 1 1 1; 1 1 0 1; 1 0 0 1]; % [Gx,P]=systematize(G); % % Gx = [1 0 0 1; 0 1 0 0; 0 0 1 0]; % P = [1 0 0]; % @end group % @end example % % @end deftypefn % @seealso{bchpoly,biterr}