% -*- texinfo -*- % @deftypefn {Function File} {[@var{y}, @var{J}] =} D (@var{F}, @var{x}, @var{varargin}) % Evaluate @var{F} for a given input @var{x} and compute the jacobian, such that % @example % % d % @var{J}(i,j) = ----- @var{y}(i) where @var{y} = @var{F}(@var{x}, @var{varargin}@{:@}) % d@var{x}(j) % % @end example % % If @var{x} is complex, the above holds for the directional derivatives % along the real axis % % Derivatives are computed analytically via Automatic Differentiation % @end deftypefn % @seealso{use_sparse_jacobians}