CSP computes common spatial patterns this version supports multiple classes using a One-vs-Rest scheme [V] = csp(ECM) [V] = csp(X,Y) [V] = csp(...,Mode) ECM(k,:,:) is the extended covariance matrices (see COVM) for class k X,Y are matrices of the two classes (one channel per column) the number of columns must be the same for X and Y Mode = 'CSP0' uses common diagonalization = 'CSP3' solves generalized eigenvalue problem V each column represents one CSP component. REFERENCES: [1] Koles ZJ, Soong AC. EEG source localization: implementing the spatio-temporal decomposition approach. Electroencephalogr Clin Neurophysiol. 1998 Nov;107(5):343-52 [2] Ramoser, H.; Muller-Gerking, J.; Pfurtscheller, G.; Optimal spatial filtering of single trial EEG during imagined hand movement Rehabilitation Engineering, IEEE Transactions on [see also IEEE Trans. on Neural Systems and Rehabilitation] Volume 8, Issue 4, Dec. 2000 Page(s):441 - 446 [3] Dornhege, G.; Blankertz, B.; Curio, G.; Muller, K.-R.; Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms Biomedical Engineering, IEEE Transactions on Volume 51, Issue 6, June 2004 Page(s):993 - 1002 Digital Object Identifier 10.1109/TBME.2004.827088 [4] Lemm, S.; Blankertz, B.; Curio, G.; Muller, K.-R.; Spatio-Spectral Filters for Improving the Classification of Single Trial EEG Biomedical Engineering, IEEE Transactions on Volume 52, Issue 9, Sept. 2005 Page(s):1541 - 1548 Digital Object Identifier 10.1109/TBME.2005.851521