


CSP computes common spatial patterns
this version supports multiple classes using a One-vs-Rest scheme
[V] = csp(ECM)
[V] = csp(X,Y)
[V] = csp(...,Mode)
ECM(k,:,:) is the extended covariance matrices (see COVM) for class k
X,Y are matrices of the two classes (one channel per column)
the number of columns must be the same for X and Y
Mode = 'CSP0' uses common diagonalization
= 'CSP3' solves generalized eigenvalue problem
V each column represents one CSP component.
REFERENCES:
[1] Koles ZJ, Soong AC.
EEG source localization: implementing the spatio-temporal decomposition approach.
Electroencephalogr Clin Neurophysiol. 1998 Nov;107(5):343-52
[2] Ramoser, H.; Muller-Gerking, J.; Pfurtscheller, G.;
Optimal spatial filtering of single trial EEG during imagined hand movement
Rehabilitation Engineering, IEEE Transactions on [see also IEEE Trans. on Neural Systems and Rehabilitation]
Volume 8, Issue 4, Dec. 2000 Page(s):441 - 446
[3] Dornhege, G.; Blankertz, B.; Curio, G.; Muller, K.-R.;
Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms
Biomedical Engineering, IEEE Transactions on
Volume 51, Issue 6, June 2004 Page(s):993 - 1002
Digital Object Identifier 10.1109/TBME.2004.827088
[4] Lemm, S.; Blankertz, B.; Curio, G.; Muller, K.-R.;
Spatio-Spectral Filters for Improving the Classification of Single Trial EEG
Biomedical Engineering, IEEE Transactions on
Volume 52, Issue 9, Sept. 2005 Page(s):1541 - 1548
Digital Object Identifier 10.1109/TBME.2005.851521